有限群,其中每个极大子群是幂零的或正规的或具有p '阶的

Jiangtao Shi, Na Li, R. Shen
{"title":"有限群,其中每个极大子群是幂零的或正规的或具有p '阶的","authors":"Jiangtao Shi, Na Li, R. Shen","doi":"10.1142/s0218196723500467","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite group and $p$ a fixed prime divisor of $|G|$. Combining the nilpotence, the normality and the order of groups together, we prove that if every maximal subgroup of $G$ is nilpotent or normal or has $p'$-order, then (1) $G$ is solvable; (2) $G$ has a Sylow tower; (3) There exists at most one prime divisor $q$ of $|G|$ such that $G$ is neither $q$-nilpotent nor $q$-closed, where $q\\neq p$.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"13 1","pages":"1055-1063"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite groups in which every maximal subgroup is nilpotent or normal or has p′-order\",\"authors\":\"Jiangtao Shi, Na Li, R. Shen\",\"doi\":\"10.1142/s0218196723500467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a finite group and $p$ a fixed prime divisor of $|G|$. Combining the nilpotence, the normality and the order of groups together, we prove that if every maximal subgroup of $G$ is nilpotent or normal or has $p'$-order, then (1) $G$ is solvable; (2) $G$ has a Sylow tower; (3) There exists at most one prime divisor $q$ of $|G|$ such that $G$ is neither $q$-nilpotent nor $q$-closed, where $q\\\\neq p$.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"13 1\",\"pages\":\"1055-1063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196723500467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196723500467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设$G$是有限群,$p$是$|G|$的固定素数因子。结合群的幂零性、正规性和阶性,证明了如果G$的每一个极大子群幂零或正规或p $-阶,则(1)G$是可解的;(2) $G$有一个Sylow塔;(3) $|G|$最多存在一个素因子$q$,使得$G$既不是$q$-幂零又不是$q$-闭,其中$q\neq p$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite groups in which every maximal subgroup is nilpotent or normal or has p′-order
Let $G$ be a finite group and $p$ a fixed prime divisor of $|G|$. Combining the nilpotence, the normality and the order of groups together, we prove that if every maximal subgroup of $G$ is nilpotent or normal or has $p'$-order, then (1) $G$ is solvable; (2) $G$ has a Sylow tower; (3) There exists at most one prime divisor $q$ of $|G|$ such that $G$ is neither $q$-nilpotent nor $q$-closed, where $q\neq p$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信