{"title":"一自由度线性中风卧床康复机器人的可行性研究","authors":"N. Berezny, D. Dowlatshahi, M. Ahmadi","doi":"10.1115/1.4050454","DOIUrl":null,"url":null,"abstract":"\n A 1DOF lower limb rehabilitation robot is presented for delivering leg extension therapy to bed-bound stroke patients. Such a compact and minimal system may be beneficial in terms of compatibility with pre-existing hospital equipment, ease-of-use, safety, and cost. A set of design criteria was created based on the literature and on previous field work at a local hospital. The device uses admittance control to apply assistive or resistive forces, and can also use haptic feedback to increase user engagement. A pilot study on six healthy participants was used to determine the feasibility of such a minimal system in administering assistance or resistance through the leg extension exercise. Results indicate that a single DOF is capable of decreasing trajectory error with assistance and increasing user effort with resistance. Observations confirm that the minimal system is effective; however, extending the robot with additional DOFs so that it can target multiple bed-bound exercises may help to increase therapy duration.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":"126 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feasibility of a One Degree-of-Freedom Linear Robot for Bed-Bound Stroke Rehabilitation\",\"authors\":\"N. Berezny, D. Dowlatshahi, M. Ahmadi\",\"doi\":\"10.1115/1.4050454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A 1DOF lower limb rehabilitation robot is presented for delivering leg extension therapy to bed-bound stroke patients. Such a compact and minimal system may be beneficial in terms of compatibility with pre-existing hospital equipment, ease-of-use, safety, and cost. A set of design criteria was created based on the literature and on previous field work at a local hospital. The device uses admittance control to apply assistive or resistive forces, and can also use haptic feedback to increase user engagement. A pilot study on six healthy participants was used to determine the feasibility of such a minimal system in administering assistance or resistance through the leg extension exercise. Results indicate that a single DOF is capable of decreasing trajectory error with assistance and increasing user effort with resistance. Observations confirm that the minimal system is effective; however, extending the robot with additional DOFs so that it can target multiple bed-bound exercises may help to increase therapy duration.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050454\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4050454","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Feasibility of a One Degree-of-Freedom Linear Robot for Bed-Bound Stroke Rehabilitation
A 1DOF lower limb rehabilitation robot is presented for delivering leg extension therapy to bed-bound stroke patients. Such a compact and minimal system may be beneficial in terms of compatibility with pre-existing hospital equipment, ease-of-use, safety, and cost. A set of design criteria was created based on the literature and on previous field work at a local hospital. The device uses admittance control to apply assistive or resistive forces, and can also use haptic feedback to increase user engagement. A pilot study on six healthy participants was used to determine the feasibility of such a minimal system in administering assistance or resistance through the leg extension exercise. Results indicate that a single DOF is capable of decreasing trajectory error with assistance and increasing user effort with resistance. Observations confirm that the minimal system is effective; however, extending the robot with additional DOFs so that it can target multiple bed-bound exercises may help to increase therapy duration.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.