整数$K$- $End_{\mathcal{A}}^{\ast}(\mathcal{H})$的运算符框架

H. Labrigui, S. Kabbaj
{"title":"整数$K$- $End_{\\mathcal{A}}^{\\ast}(\\mathcal{H})$的运算符框架","authors":"H. Labrigui, S. Kabbaj","doi":"10.22130/SCMA.2021.140176.874","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from Hilbert $C^{\\ast}$-modules $\\mathcal{H}$ to it self noted $End_{\\mathcal{A}}^{\\ast}(\\mathcal{H}) $. We give some propertis relating some construction of integral $K$-operator frame and operators preserving integral $K$-operator frame and we establish some new results.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral $K$-Operator Frames for $End_{\\\\mathcal{A}}^{\\\\ast}(\\\\mathcal{H})$\",\"authors\":\"H. Labrigui, S. Kabbaj\",\"doi\":\"10.22130/SCMA.2021.140176.874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from Hilbert $C^{\\\\ast}$-modules $\\\\mathcal{H}$ to it self noted $End_{\\\\mathcal{A}}^{\\\\ast}(\\\\mathcal{H}) $. We give some propertis relating some construction of integral $K$-operator frame and operators preserving integral $K$-operator frame and we establish some new results.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22130/SCMA.2021.140176.874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2021.140176.874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了从Hilbert $C^{\ast}$-modules $\mathcal{H}$到其自记$End_{\mathcal{a}}^{\ast}(\mathcal{H}) $的所有可伴算子集合的积分$K$算子框架的新概念。给出了关于积分K算子框架和算子保持积分K算子框架的构造的一些性质,并得到了一些新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from Hilbert $C^{\ast}$-modules $\mathcal{H}$ to it self noted $End_{\mathcal{A}}^{\ast}(\mathcal{H}) $. We give some propertis relating some construction of integral $K$-operator frame and operators preserving integral $K$-operator frame and we establish some new results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信