{"title":"整数$K$- $End_{\\mathcal{A}}^{\\ast}(\\mathcal{H})$的运算符框架","authors":"H. Labrigui, S. Kabbaj","doi":"10.22130/SCMA.2021.140176.874","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from Hilbert $C^{\\ast}$-modules $\\mathcal{H}$ to it self noted $End_{\\mathcal{A}}^{\\ast}(\\mathcal{H}) $. We give some propertis relating some construction of integral $K$-operator frame and operators preserving integral $K$-operator frame and we establish some new results.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral $K$-Operator Frames for $End_{\\\\mathcal{A}}^{\\\\ast}(\\\\mathcal{H})$\",\"authors\":\"H. Labrigui, S. Kabbaj\",\"doi\":\"10.22130/SCMA.2021.140176.874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from Hilbert $C^{\\\\ast}$-modules $\\\\mathcal{H}$ to it self noted $End_{\\\\mathcal{A}}^{\\\\ast}(\\\\mathcal{H}) $. We give some propertis relating some construction of integral $K$-operator frame and operators preserving integral $K$-operator frame and we establish some new results.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22130/SCMA.2021.140176.874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2021.140176.874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integral $K$-Operator Frames for $End_{\mathcal{A}}^{\ast}(\mathcal{H})$
In this work, we introduce a new concept of integral $K$-operator frame for the set of all adjointable operators from Hilbert $C^{\ast}$-modules $\mathcal{H}$ to it self noted $End_{\mathcal{A}}^{\ast}(\mathcal{H}) $. We give some propertis relating some construction of integral $K$-operator frame and operators preserving integral $K$-operator frame and we establish some new results.