运用SAS PROC IRT进行多维项目反应理论分析

IF 0.6 Q3 SOCIAL SCIENCES, INTERDISCIPLINARY
Ki Cole, Insu Paek
{"title":"运用SAS PROC IRT进行多维项目反应理论分析","authors":"Ki Cole, Insu Paek","doi":"10.1080/15366367.2021.1976090","DOIUrl":null,"url":null,"abstract":"ABSTRACT Statistical Analysis Software (SAS) is a widely used tool for data management analysis across a variety of fields. The procedure for item response theory (PROC IRT) is one to perform unidimensional and multidimensional item response theory (IRT) analysis for dichotomous and polytomous data. This review provides a summary of the features of PROC IRT specifically for multidimensional data with examples provided for simple structure data, complex structure data, and bifactor data. Instructive examples for dichotomous data (using the Rasch and 2-parameter logistic models) and polytomous data (using the graded response model) are given. Explanations of the syntax are also presented.","PeriodicalId":46596,"journal":{"name":"Measurement-Interdisciplinary Research and Perspectives","volume":"13 1","pages":"49 - 55"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using SAS PROC IRT for Multidimensional Item Response Theory Analysis\",\"authors\":\"Ki Cole, Insu Paek\",\"doi\":\"10.1080/15366367.2021.1976090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Statistical Analysis Software (SAS) is a widely used tool for data management analysis across a variety of fields. The procedure for item response theory (PROC IRT) is one to perform unidimensional and multidimensional item response theory (IRT) analysis for dichotomous and polytomous data. This review provides a summary of the features of PROC IRT specifically for multidimensional data with examples provided for simple structure data, complex structure data, and bifactor data. Instructive examples for dichotomous data (using the Rasch and 2-parameter logistic models) and polytomous data (using the graded response model) are given. Explanations of the syntax are also presented.\",\"PeriodicalId\":46596,\"journal\":{\"name\":\"Measurement-Interdisciplinary Research and Perspectives\",\"volume\":\"13 1\",\"pages\":\"49 - 55\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement-Interdisciplinary Research and Perspectives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15366367.2021.1976090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement-Interdisciplinary Research and Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15366367.2021.1976090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

统计分析软件(SAS)是一种广泛应用于各个领域的数据管理分析工具。项目反应理论是对二分和多分数据进行一维和多维项目反应理论分析的过程。这篇综述总结了PROC IRT在多维数据中的特点,并提供了简单结构数据、复杂结构数据和双因素数据的例子。给出了二分类数据(使用Rasch和2参数逻辑模型)和多分类数据(使用分级响应模型)的实例。还提供了语法解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using SAS PROC IRT for Multidimensional Item Response Theory Analysis
ABSTRACT Statistical Analysis Software (SAS) is a widely used tool for data management analysis across a variety of fields. The procedure for item response theory (PROC IRT) is one to perform unidimensional and multidimensional item response theory (IRT) analysis for dichotomous and polytomous data. This review provides a summary of the features of PROC IRT specifically for multidimensional data with examples provided for simple structure data, complex structure data, and bifactor data. Instructive examples for dichotomous data (using the Rasch and 2-parameter logistic models) and polytomous data (using the graded response model) are given. Explanations of the syntax are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement-Interdisciplinary Research and Perspectives
Measurement-Interdisciplinary Research and Perspectives SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信