{"title":"弹塑性振子随机最优控制的自由边值问题和hjb方程","authors":"M. Laurière, Z. Li, L. Mertz, J. Wylie, S. Zuo","doi":"10.1051/PROC/201965425","DOIUrl":null,"url":null,"abstract":"We consider the optimal stopping and optimal control problems related to stochastic variational inequalities modeling elasto-plastic oscillators subject to random forcing. We formally derive the corresponding free boundary value problems and Hamilton-Jacobi-Bellman equations which belong to a class of nonlinear partial of differential equations with nonlocal Dirichlet boundary conditions. Then, we focus on solving numerically these equations by employing a combination of Howard’s algorithm and the numerical approach [A backward Kolmogorov equation approach to compute means, moments and correlations of non-smooth stochastic dynamical systems; Mertz, Stadler, Wylie; 2017] for this type of boundary conditions. Numerical experiments are given.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Free boundary value problems and hjb equations for the stochastic optimal control of elasto-plastic oscillators\",\"authors\":\"M. Laurière, Z. Li, L. Mertz, J. Wylie, S. Zuo\",\"doi\":\"10.1051/PROC/201965425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the optimal stopping and optimal control problems related to stochastic variational inequalities modeling elasto-plastic oscillators subject to random forcing. We formally derive the corresponding free boundary value problems and Hamilton-Jacobi-Bellman equations which belong to a class of nonlinear partial of differential equations with nonlocal Dirichlet boundary conditions. Then, we focus on solving numerically these equations by employing a combination of Howard’s algorithm and the numerical approach [A backward Kolmogorov equation approach to compute means, moments and correlations of non-smooth stochastic dynamical systems; Mertz, Stadler, Wylie; 2017] for this type of boundary conditions. Numerical experiments are given.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/PROC/201965425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/PROC/201965425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Free boundary value problems and hjb equations for the stochastic optimal control of elasto-plastic oscillators
We consider the optimal stopping and optimal control problems related to stochastic variational inequalities modeling elasto-plastic oscillators subject to random forcing. We formally derive the corresponding free boundary value problems and Hamilton-Jacobi-Bellman equations which belong to a class of nonlinear partial of differential equations with nonlocal Dirichlet boundary conditions. Then, we focus on solving numerically these equations by employing a combination of Howard’s algorithm and the numerical approach [A backward Kolmogorov equation approach to compute means, moments and correlations of non-smooth stochastic dynamical systems; Mertz, Stadler, Wylie; 2017] for this type of boundary conditions. Numerical experiments are given.