用于远程教学的衍射试验台

3区 物理与天体物理 Q1 Materials Science
Javier Gamo
{"title":"用于远程教学的衍射试验台","authors":"Javier Gamo","doi":"10.3390/opt2040023","DOIUrl":null,"url":null,"abstract":"The need for remote teaching tools in all education levels has experienced a big increase due to COVID-19 pandemic. Laboratory practical sessions have not been an exception, and many online and offline tools have been made available to respond to the lockdown of teaching facilities. This paper presents a software testbed named OPTILAB for teaching diffraction experiments to engineering students. The software simulates classical diffraction apertures (single slit, double slit, circular slit) under a wide variety of conditions. Explanation about the Physics behind the diffraction phenomenon is also included in OPTILAB to increase the students’ self-learning experience. Originally conceived as a complement to on-site teaching, due to COVID-19 pandemic OPTILAB has been adopted as the basic tool to build a brand-new, virtual laboratory session about diffraction in Physics III course (biomedical engineering) at Carlos III University of Madrid. Results obtained by the students taking this virtual lab during Fall 2020 are presented and discussed.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffraction Testbed for Use in Remote Teaching\",\"authors\":\"Javier Gamo\",\"doi\":\"10.3390/opt2040023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for remote teaching tools in all education levels has experienced a big increase due to COVID-19 pandemic. Laboratory practical sessions have not been an exception, and many online and offline tools have been made available to respond to the lockdown of teaching facilities. This paper presents a software testbed named OPTILAB for teaching diffraction experiments to engineering students. The software simulates classical diffraction apertures (single slit, double slit, circular slit) under a wide variety of conditions. Explanation about the Physics behind the diffraction phenomenon is also included in OPTILAB to increase the students’ self-learning experience. Originally conceived as a complement to on-site teaching, due to COVID-19 pandemic OPTILAB has been adopted as the basic tool to build a brand-new, virtual laboratory session about diffraction in Physics III course (biomedical engineering) at Carlos III University of Madrid. Results obtained by the students taking this virtual lab during Fall 2020 are presented and discussed.\",\"PeriodicalId\":54548,\"journal\":{\"name\":\"Progress in Optics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/opt2040023\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/opt2040023","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

由于COVID-19大流行,各级教育对远程教学工具的需求大幅增加。实验室实践课程也不例外,已经提供了许多在线和离线工具来应对教学设施的封锁。本文介绍了一种用于工科学生衍射实验教学的软件测试平台OPTILAB。该软件模拟了各种条件下的经典衍射孔径(单缝、双缝、圆缝)。OPTILAB还包括对衍射现象背后的物理解释,以增加学生的自学经验。最初的设想是作为现场教学的补充,由于COVID-19大流行,OPTILAB已被采用作为基本工具,在马德里卡洛斯三世大学物理III课程(生物医学工程)中建立一个全新的虚拟实验室,关于衍射。介绍和讨论了2020年秋季学生参加虚拟实验室的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffraction Testbed for Use in Remote Teaching
The need for remote teaching tools in all education levels has experienced a big increase due to COVID-19 pandemic. Laboratory practical sessions have not been an exception, and many online and offline tools have been made available to respond to the lockdown of teaching facilities. This paper presents a software testbed named OPTILAB for teaching diffraction experiments to engineering students. The software simulates classical diffraction apertures (single slit, double slit, circular slit) under a wide variety of conditions. Explanation about the Physics behind the diffraction phenomenon is also included in OPTILAB to increase the students’ self-learning experience. Originally conceived as a complement to on-site teaching, due to COVID-19 pandemic OPTILAB has been adopted as the basic tool to build a brand-new, virtual laboratory session about diffraction in Physics III course (biomedical engineering) at Carlos III University of Madrid. Results obtained by the students taking this virtual lab during Fall 2020 are presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Optics
Progress in Optics 物理-光学
CiteScore
4.50
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信