基于问题的学习分析仪表板

Zilong Pan, Chenglu Li, Min Liu
{"title":"基于问题的学习分析仪表板","authors":"Zilong Pan, Chenglu Li, Min Liu","doi":"10.1145/3386527.3406751","DOIUrl":null,"url":null,"abstract":"This study examined two machine learning models for de- signing a learning analytics dashboard to assist teachers in facilitating problem-based learning. Specifically, we used BERT to automatically process a large amount of textual data to understand students' scientific argumentation. We then used Hidden Markov Model (HMM) to find students' cognitive state transition with time-series data. Preliminary results showed the models achieved high accuracy and were coherent with related theories, indicating the models can provide teachers with interpretable information to identify in-need students.","PeriodicalId":20608,"journal":{"name":"Proceedings of the Seventh ACM Conference on Learning @ Scale","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning Analytics Dashboard for Problem-based Learning\",\"authors\":\"Zilong Pan, Chenglu Li, Min Liu\",\"doi\":\"10.1145/3386527.3406751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined two machine learning models for de- signing a learning analytics dashboard to assist teachers in facilitating problem-based learning. Specifically, we used BERT to automatically process a large amount of textual data to understand students' scientific argumentation. We then used Hidden Markov Model (HMM) to find students' cognitive state transition with time-series data. Preliminary results showed the models achieved high accuracy and were coherent with related theories, indicating the models can provide teachers with interpretable information to identify in-need students.\",\"PeriodicalId\":20608,\"journal\":{\"name\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386527.3406751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386527.3406751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究考察了设计学习分析仪表板的两种机器学习模型,以帮助教师促进基于问题的学习。具体来说,我们使用BERT自动处理大量文本数据来理解学生的科学论证。然后利用隐马尔可夫模型(HMM)对学生的认知状态转换进行时序分析。初步结果表明,该模型具有较高的准确性,且与相关理论相一致,表明该模型能够为教师提供可解释的信息,以识别有需要的学生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Analytics Dashboard for Problem-based Learning
This study examined two machine learning models for de- signing a learning analytics dashboard to assist teachers in facilitating problem-based learning. Specifically, we used BERT to automatically process a large amount of textual data to understand students' scientific argumentation. We then used Hidden Markov Model (HMM) to find students' cognitive state transition with time-series data. Preliminary results showed the models achieved high accuracy and were coherent with related theories, indicating the models can provide teachers with interpretable information to identify in-need students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信