Natsuki Date, Atoki Sato, Kazuya Takeuchi, Toshihiro Mori, Kohei Yokosuka, Yuki Ito, K. Shima, Keigo Suzuki, H. Taguchi, Tomohiro Chiyozaki, Kento Yanagawa, Tom Giles, T. Akitsu
{"title":"巴黎圣母院的火灾和环境中的铅材料","authors":"Natsuki Date, Atoki Sato, Kazuya Takeuchi, Toshihiro Mori, Kohei Yokosuka, Yuki Ito, K. Shima, Keigo Suzuki, H. Taguchi, Tomohiro Chiyozaki, Kento Yanagawa, Tom Giles, T. Akitsu","doi":"10.3210/fst.39.17","DOIUrl":null,"url":null,"abstract":"This literature review deals with lead materials in fire and related environmental issues based on inorganic chemistry. In 2019, the Notre Dame Cathedral fire raised not only the issue of damage to historical building, but also the issue of the impact of lead materials on the environment as well as human health. Three months after the fire, French media reported that lead contamination had been detected in the area around the cathedral, with lead levels 500-800 times higher than the safety requirements. More than 200 tons of lead used in the roofs and spire melted in the fire. Besides this French fire case, chemical aspects of lead (element and compounds), usage of lead as building materials (Japanese castle, paint for a highway bridge, and protection against radioactive rays) on past architectural fires, energy materials (gasoline, lead-acid battery, and Perovskites solar cells in future) and their potential fire risk, and impact to human are also reviewed in this paper.","PeriodicalId":12289,"journal":{"name":"Fire Science and Technology","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fire at Notre Dame Cathedral and Lead Materials in the Environment\",\"authors\":\"Natsuki Date, Atoki Sato, Kazuya Takeuchi, Toshihiro Mori, Kohei Yokosuka, Yuki Ito, K. Shima, Keigo Suzuki, H. Taguchi, Tomohiro Chiyozaki, Kento Yanagawa, Tom Giles, T. Akitsu\",\"doi\":\"10.3210/fst.39.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This literature review deals with lead materials in fire and related environmental issues based on inorganic chemistry. In 2019, the Notre Dame Cathedral fire raised not only the issue of damage to historical building, but also the issue of the impact of lead materials on the environment as well as human health. Three months after the fire, French media reported that lead contamination had been detected in the area around the cathedral, with lead levels 500-800 times higher than the safety requirements. More than 200 tons of lead used in the roofs and spire melted in the fire. Besides this French fire case, chemical aspects of lead (element and compounds), usage of lead as building materials (Japanese castle, paint for a highway bridge, and protection against radioactive rays) on past architectural fires, energy materials (gasoline, lead-acid battery, and Perovskites solar cells in future) and their potential fire risk, and impact to human are also reviewed in this paper.\",\"PeriodicalId\":12289,\"journal\":{\"name\":\"Fire Science and Technology\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Science and Technology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3210/fst.39.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Science and Technology","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3210/fst.39.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fire at Notre Dame Cathedral and Lead Materials in the Environment
This literature review deals with lead materials in fire and related environmental issues based on inorganic chemistry. In 2019, the Notre Dame Cathedral fire raised not only the issue of damage to historical building, but also the issue of the impact of lead materials on the environment as well as human health. Three months after the fire, French media reported that lead contamination had been detected in the area around the cathedral, with lead levels 500-800 times higher than the safety requirements. More than 200 tons of lead used in the roofs and spire melted in the fire. Besides this French fire case, chemical aspects of lead (element and compounds), usage of lead as building materials (Japanese castle, paint for a highway bridge, and protection against radioactive rays) on past architectural fires, energy materials (gasoline, lead-acid battery, and Perovskites solar cells in future) and their potential fire risk, and impact to human are also reviewed in this paper.