不同器件参数对锡基钙钛矿太阳能电池耦合In2S3电子传输层和CuSCN和Spiro-OMeTAD替代空穴传输层的高效性能的影响

Intekhab Alam, Md Ali Ashraf
{"title":"不同器件参数对锡基钙钛矿太阳能电池耦合In2S3电子传输层和CuSCN和Spiro-OMeTAD替代空穴传输层的高效性能的影响","authors":"Intekhab Alam, Md Ali Ashraf","doi":"10.1080/15567036.2020.1820628","DOIUrl":null,"url":null,"abstract":"SCAPS 1-D was used for the simulation of lead-free environmentally benign methylammonium tin-iodide (CH3NH3SnI3) based solar cell. Indium sulphide (In2S3) was utilized as the electron transport layer (ETL) for its high carrier mobility and optimized band structure, unlike traditional titanium oxide (TiO2) ETL. Traditional expensive spiro-OMeTAD (C81H68N4O8) and cheaper cuprous thiocyanate (CuSCN) were utilized alternatively as hole transport layer (HTL) to observe the effect of different HTL on cell performance. We investigated the trend in electrical measurements by altering parameters such as thickness, defect density, valence band (VB) effective density of state and bandgap of the absorber layer, interfacial trap densities and defect density of ETL. At optimum condition, the device revealed the highest efficiency of 18.45% for CuSCN (HTL) and 19.32% for spiro-OMeTAD (HTL) configuration. The effect of working temperature, the wavelength of light and band-to-band radiative recombination rate was also observed for both configurations. All these simulation results will help to fabricate eco-friendly high-efficiency perovskite solar cell by replacing the commonly used toxic lead-based perovskite.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and CuSCN and Spiro-OMeTAD alternative hole transport layers for high-efficiency performance\",\"authors\":\"Intekhab Alam, Md Ali Ashraf\",\"doi\":\"10.1080/15567036.2020.1820628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SCAPS 1-D was used for the simulation of lead-free environmentally benign methylammonium tin-iodide (CH3NH3SnI3) based solar cell. Indium sulphide (In2S3) was utilized as the electron transport layer (ETL) for its high carrier mobility and optimized band structure, unlike traditional titanium oxide (TiO2) ETL. Traditional expensive spiro-OMeTAD (C81H68N4O8) and cheaper cuprous thiocyanate (CuSCN) were utilized alternatively as hole transport layer (HTL) to observe the effect of different HTL on cell performance. We investigated the trend in electrical measurements by altering parameters such as thickness, defect density, valence band (VB) effective density of state and bandgap of the absorber layer, interfacial trap densities and defect density of ETL. At optimum condition, the device revealed the highest efficiency of 18.45% for CuSCN (HTL) and 19.32% for spiro-OMeTAD (HTL) configuration. The effect of working temperature, the wavelength of light and band-to-band radiative recombination rate was also observed for both configurations. All these simulation results will help to fabricate eco-friendly high-efficiency perovskite solar cell by replacing the commonly used toxic lead-based perovskite.\",\"PeriodicalId\":8467,\"journal\":{\"name\":\"arXiv: Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15567036.2020.1820628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15567036.2020.1820628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

利用SCAPS 1-D对无铅环境友好型碘化锡甲基铵(CH3NH3SnI3)基太阳能电池进行了模拟。与传统的氧化钛(TiO2) ETL不同,利用硫化铟(In2S3)作为电子传输层(ETL)具有较高的载流子迁移率和优化的能带结构。采用传统昂贵的螺旋- ometad (C81H68N4O8)和廉价的硫氰酸亚铜(CuSCN)交替作为空穴传输层(HTL),观察不同HTL对电池性能的影响。我们通过改变ETL的厚度、缺陷密度、吸收层的价带(VB)有效态密度和带隙、界面阱密度和缺陷密度等参数来研究电测量的趋势。在最佳条件下,CuSCN (HTL)和spiro-OMeTAD (HTL)的效率最高,分别为18.45%和19.32%。研究了工作温度、光波长和波段间辐射复合率对两种构型的影响。这些模拟结果将有助于替代常用的有毒铅基钙钛矿,制造环保高效的钙钛矿太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and CuSCN and Spiro-OMeTAD alternative hole transport layers for high-efficiency performance
SCAPS 1-D was used for the simulation of lead-free environmentally benign methylammonium tin-iodide (CH3NH3SnI3) based solar cell. Indium sulphide (In2S3) was utilized as the electron transport layer (ETL) for its high carrier mobility and optimized band structure, unlike traditional titanium oxide (TiO2) ETL. Traditional expensive spiro-OMeTAD (C81H68N4O8) and cheaper cuprous thiocyanate (CuSCN) were utilized alternatively as hole transport layer (HTL) to observe the effect of different HTL on cell performance. We investigated the trend in electrical measurements by altering parameters such as thickness, defect density, valence band (VB) effective density of state and bandgap of the absorber layer, interfacial trap densities and defect density of ETL. At optimum condition, the device revealed the highest efficiency of 18.45% for CuSCN (HTL) and 19.32% for spiro-OMeTAD (HTL) configuration. The effect of working temperature, the wavelength of light and band-to-band radiative recombination rate was also observed for both configurations. All these simulation results will help to fabricate eco-friendly high-efficiency perovskite solar cell by replacing the commonly used toxic lead-based perovskite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信