{"title":"不同器件参数对锡基钙钛矿太阳能电池耦合In2S3电子传输层和CuSCN和Spiro-OMeTAD替代空穴传输层的高效性能的影响","authors":"Intekhab Alam, Md Ali Ashraf","doi":"10.1080/15567036.2020.1820628","DOIUrl":null,"url":null,"abstract":"SCAPS 1-D was used for the simulation of lead-free environmentally benign methylammonium tin-iodide (CH3NH3SnI3) based solar cell. Indium sulphide (In2S3) was utilized as the electron transport layer (ETL) for its high carrier mobility and optimized band structure, unlike traditional titanium oxide (TiO2) ETL. Traditional expensive spiro-OMeTAD (C81H68N4O8) and cheaper cuprous thiocyanate (CuSCN) were utilized alternatively as hole transport layer (HTL) to observe the effect of different HTL on cell performance. We investigated the trend in electrical measurements by altering parameters such as thickness, defect density, valence band (VB) effective density of state and bandgap of the absorber layer, interfacial trap densities and defect density of ETL. At optimum condition, the device revealed the highest efficiency of 18.45% for CuSCN (HTL) and 19.32% for spiro-OMeTAD (HTL) configuration. The effect of working temperature, the wavelength of light and band-to-band radiative recombination rate was also observed for both configurations. All these simulation results will help to fabricate eco-friendly high-efficiency perovskite solar cell by replacing the commonly used toxic lead-based perovskite.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and CuSCN and Spiro-OMeTAD alternative hole transport layers for high-efficiency performance\",\"authors\":\"Intekhab Alam, Md Ali Ashraf\",\"doi\":\"10.1080/15567036.2020.1820628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SCAPS 1-D was used for the simulation of lead-free environmentally benign methylammonium tin-iodide (CH3NH3SnI3) based solar cell. Indium sulphide (In2S3) was utilized as the electron transport layer (ETL) for its high carrier mobility and optimized band structure, unlike traditional titanium oxide (TiO2) ETL. Traditional expensive spiro-OMeTAD (C81H68N4O8) and cheaper cuprous thiocyanate (CuSCN) were utilized alternatively as hole transport layer (HTL) to observe the effect of different HTL on cell performance. We investigated the trend in electrical measurements by altering parameters such as thickness, defect density, valence band (VB) effective density of state and bandgap of the absorber layer, interfacial trap densities and defect density of ETL. At optimum condition, the device revealed the highest efficiency of 18.45% for CuSCN (HTL) and 19.32% for spiro-OMeTAD (HTL) configuration. The effect of working temperature, the wavelength of light and band-to-band radiative recombination rate was also observed for both configurations. All these simulation results will help to fabricate eco-friendly high-efficiency perovskite solar cell by replacing the commonly used toxic lead-based perovskite.\",\"PeriodicalId\":8467,\"journal\":{\"name\":\"arXiv: Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15567036.2020.1820628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15567036.2020.1820628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and CuSCN and Spiro-OMeTAD alternative hole transport layers for high-efficiency performance
SCAPS 1-D was used for the simulation of lead-free environmentally benign methylammonium tin-iodide (CH3NH3SnI3) based solar cell. Indium sulphide (In2S3) was utilized as the electron transport layer (ETL) for its high carrier mobility and optimized band structure, unlike traditional titanium oxide (TiO2) ETL. Traditional expensive spiro-OMeTAD (C81H68N4O8) and cheaper cuprous thiocyanate (CuSCN) were utilized alternatively as hole transport layer (HTL) to observe the effect of different HTL on cell performance. We investigated the trend in electrical measurements by altering parameters such as thickness, defect density, valence band (VB) effective density of state and bandgap of the absorber layer, interfacial trap densities and defect density of ETL. At optimum condition, the device revealed the highest efficiency of 18.45% for CuSCN (HTL) and 19.32% for spiro-OMeTAD (HTL) configuration. The effect of working temperature, the wavelength of light and band-to-band radiative recombination rate was also observed for both configurations. All these simulation results will help to fabricate eco-friendly high-efficiency perovskite solar cell by replacing the commonly used toxic lead-based perovskite.