透镜空间中的代数连杆

E. Horvat
{"title":"透镜空间中的代数连杆","authors":"E. Horvat","doi":"10.1142/s0219199720500662","DOIUrl":null,"url":null,"abstract":"The lens space $L_{p,q}$ is the orbit space of a $\\mathbb{Z}_{p}$-action on the three sphere. We investigate polynomials of two complex variables that are invariant under this action, and thus define links in $L_{p,q}$. We study properties of these links, and their relationship with the classical algebraic links. We prove that all algebraic links in lens spaces are fibered, and obtain results about their Seifert genus. We find some examples of algebraic knots in lens spaces, whose lift in the $3$-sphere is a torus link.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algebraic links in lens spaces\",\"authors\":\"E. Horvat\",\"doi\":\"10.1142/s0219199720500662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lens space $L_{p,q}$ is the orbit space of a $\\\\mathbb{Z}_{p}$-action on the three sphere. We investigate polynomials of two complex variables that are invariant under this action, and thus define links in $L_{p,q}$. We study properties of these links, and their relationship with the classical algebraic links. We prove that all algebraic links in lens spaces are fibered, and obtain results about their Seifert genus. We find some examples of algebraic knots in lens spaces, whose lift in the $3$-sphere is a torus link.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199720500662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219199720500662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

透镜空间$L_{p,q}$是$\mathbb{Z}_{p}$-作用在三球面上的轨道空间。我们研究了在此作用下不变的两个复变量的多项式,从而定义了$L_{p,q}$中的链接。我们研究了这些连杆的性质,以及它们与经典代数连杆的关系。证明了透镜空间中所有代数连杆都是纤维状的,并得到了它们的Seifert属的一些结果。我们在透镜空间中找到了一些代数结的例子,它们在球面上的升力是环面连杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic links in lens spaces
The lens space $L_{p,q}$ is the orbit space of a $\mathbb{Z}_{p}$-action on the three sphere. We investigate polynomials of two complex variables that are invariant under this action, and thus define links in $L_{p,q}$. We study properties of these links, and their relationship with the classical algebraic links. We prove that all algebraic links in lens spaces are fibered, and obtain results about their Seifert genus. We find some examples of algebraic knots in lens spaces, whose lift in the $3$-sphere is a torus link.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信