命题证明的复杂性

Pub Date : 2007-12-01 DOI:10.2178/bsl/1203350879
Nathan Segerlind
{"title":"命题证明的复杂性","authors":"Nathan Segerlind","doi":"10.2178/bsl/1203350879","DOIUrl":null,"url":null,"abstract":"Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"The Complexity of Propositional Proofs\",\"authors\":\"Nathan Segerlind\",\"doi\":\"10.2178/bsl/1203350879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2178/bsl/1203350879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2178/bsl/1203350879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

命题证明复杂性是研究命题证明的大小,更一般地说,是证明命题重言式所需的资源。关于证明大小的问题与计算复杂性、算术理论和可满足性算法有关。这篇文章包括对该领域的广泛调查,以及对一些最近开发的证明大小下界的技术的技术说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Complexity of Propositional Proofs
Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信