{"title":"带标记点的超椭圆曲线模空间的有理Chow环","authors":"Samir Canning, H. Larson","doi":"10.2422/2036-2145.202208_012","DOIUrl":null,"url":null,"abstract":"We determine the rational Chow ring of the moduli space $\\mathcal{H}_{g,n}$ of $n$-pointed smooth hyperelliptic curves of genus $g$ when $n \\leq 2g+6$. We also show that the Chow ring of the partial compactification $\\mathcal{I}_{g,n}$, parametrizing $n$-pointed irreducible nodal hyperelliptic curves, is generated by tautological divisors. Along the way, we improve Casnati's result that $\\mathcal{H}_{g,n}$ is rational for $n \\leq 2g+8$ to show $\\mathcal{H}_{g,n}$ is rational for $n \\leq 3g+5$.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The rational Chow rings of moduli spaces of hyperelliptic curves with marked points\",\"authors\":\"Samir Canning, H. Larson\",\"doi\":\"10.2422/2036-2145.202208_012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the rational Chow ring of the moduli space $\\\\mathcal{H}_{g,n}$ of $n$-pointed smooth hyperelliptic curves of genus $g$ when $n \\\\leq 2g+6$. We also show that the Chow ring of the partial compactification $\\\\mathcal{I}_{g,n}$, parametrizing $n$-pointed irreducible nodal hyperelliptic curves, is generated by tautological divisors. Along the way, we improve Casnati's result that $\\\\mathcal{H}_{g,n}$ is rational for $n \\\\leq 2g+8$ to show $\\\\mathcal{H}_{g,n}$ is rational for $n \\\\leq 3g+5$.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202208_012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202208_012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The rational Chow rings of moduli spaces of hyperelliptic curves with marked points
We determine the rational Chow ring of the moduli space $\mathcal{H}_{g,n}$ of $n$-pointed smooth hyperelliptic curves of genus $g$ when $n \leq 2g+6$. We also show that the Chow ring of the partial compactification $\mathcal{I}_{g,n}$, parametrizing $n$-pointed irreducible nodal hyperelliptic curves, is generated by tautological divisors. Along the way, we improve Casnati's result that $\mathcal{H}_{g,n}$ is rational for $n \leq 2g+8$ to show $\mathcal{H}_{g,n}$ is rational for $n \leq 3g+5$.