带标记点的超椭圆曲线模空间的有理Chow环

Samir Canning, H. Larson
{"title":"带标记点的超椭圆曲线模空间的有理Chow环","authors":"Samir Canning, H. Larson","doi":"10.2422/2036-2145.202208_012","DOIUrl":null,"url":null,"abstract":"We determine the rational Chow ring of the moduli space $\\mathcal{H}_{g,n}$ of $n$-pointed smooth hyperelliptic curves of genus $g$ when $n \\leq 2g+6$. We also show that the Chow ring of the partial compactification $\\mathcal{I}_{g,n}$, parametrizing $n$-pointed irreducible nodal hyperelliptic curves, is generated by tautological divisors. Along the way, we improve Casnati's result that $\\mathcal{H}_{g,n}$ is rational for $n \\leq 2g+8$ to show $\\mathcal{H}_{g,n}$ is rational for $n \\leq 3g+5$.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The rational Chow rings of moduli spaces of hyperelliptic curves with marked points\",\"authors\":\"Samir Canning, H. Larson\",\"doi\":\"10.2422/2036-2145.202208_012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the rational Chow ring of the moduli space $\\\\mathcal{H}_{g,n}$ of $n$-pointed smooth hyperelliptic curves of genus $g$ when $n \\\\leq 2g+6$. We also show that the Chow ring of the partial compactification $\\\\mathcal{I}_{g,n}$, parametrizing $n$-pointed irreducible nodal hyperelliptic curves, is generated by tautological divisors. Along the way, we improve Casnati's result that $\\\\mathcal{H}_{g,n}$ is rational for $n \\\\leq 2g+8$ to show $\\\\mathcal{H}_{g,n}$ is rational for $n \\\\leq 3g+5$.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202208_012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202208_012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们确定了模空间的有理Chow环 $\mathcal{H}_{g,n}$ 的 $n$属的尖光滑超椭圆曲线 $g$ 什么时候 $n \leq 2g+6$. 我们还证明了部分紧化的Chow环 $\mathcal{I}_{g,n}$参数化 $n$点不可约节点超椭圆曲线,是由同义除数生成的。在此过程中,我们改进了Casnati的结果 $\mathcal{H}_{g,n}$ 是合理的 $n \leq 2g+8$ 展示 $\mathcal{H}_{g,n}$ 是合理的 $n \leq 3g+5$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The rational Chow rings of moduli spaces of hyperelliptic curves with marked points
We determine the rational Chow ring of the moduli space $\mathcal{H}_{g,n}$ of $n$-pointed smooth hyperelliptic curves of genus $g$ when $n \leq 2g+6$. We also show that the Chow ring of the partial compactification $\mathcal{I}_{g,n}$, parametrizing $n$-pointed irreducible nodal hyperelliptic curves, is generated by tautological divisors. Along the way, we improve Casnati's result that $\mathcal{H}_{g,n}$ is rational for $n \leq 2g+8$ to show $\mathcal{H}_{g,n}$ is rational for $n \leq 3g+5$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信