{"title":"如果Corson紧空间对角的补是函数可数的,则该空间是可数的","authors":"V. Tkachuk","doi":"10.1556/012.2021.58.3.1508","DOIUrl":null,"url":null,"abstract":"A space X is called functionally countable if ƒ (X) is countable for any continuous function ƒ : X → Ø. Given an infinite cardinal k, we prove that a compact scattered space K with d(K) > k must have a convergent k+-sequence. This result implies that a Corson compact space K is countable if the space (K × K) \\ ΔK is functionally countable; here ΔK = {(x, x): x ϵ K} is the diagonal of K. We also establish that, under Jensen’s Axiom ♦, there exists a compact hereditarily separable non-metrizable compact space X such that (X × X) \\ ΔX is functionally countable and show in ZFC that there exists a non-separable σ-compact space X such that (X × X) \\ ΔX is functionally countable.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"15 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Corson Compact Space is Countable if the Complement of its Diagonal is Functionally Countable\",\"authors\":\"V. Tkachuk\",\"doi\":\"10.1556/012.2021.58.3.1508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A space X is called functionally countable if ƒ (X) is countable for any continuous function ƒ : X → Ø. Given an infinite cardinal k, we prove that a compact scattered space K with d(K) > k must have a convergent k+-sequence. This result implies that a Corson compact space K is countable if the space (K × K) \\\\ ΔK is functionally countable; here ΔK = {(x, x): x ϵ K} is the diagonal of K. We also establish that, under Jensen’s Axiom ♦, there exists a compact hereditarily separable non-metrizable compact space X such that (X × X) \\\\ ΔX is functionally countable and show in ZFC that there exists a non-separable σ-compact space X such that (X × X) \\\\ ΔX is functionally countable.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2021.58.3.1508\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2021.58.3.1508","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Corson Compact Space is Countable if the Complement of its Diagonal is Functionally Countable
A space X is called functionally countable if ƒ (X) is countable for any continuous function ƒ : X → Ø. Given an infinite cardinal k, we prove that a compact scattered space K with d(K) > k must have a convergent k+-sequence. This result implies that a Corson compact space K is countable if the space (K × K) \ ΔK is functionally countable; here ΔK = {(x, x): x ϵ K} is the diagonal of K. We also establish that, under Jensen’s Axiom ♦, there exists a compact hereditarily separable non-metrizable compact space X such that (X × X) \ ΔX is functionally countable and show in ZFC that there exists a non-separable σ-compact space X such that (X × X) \ ΔX is functionally countable.
期刊介绍:
The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.