如果Corson紧空间对角的补是函数可数的,则该空间是可数的

IF 0.4 4区 数学 Q4 MATHEMATICS
V. Tkachuk
{"title":"如果Corson紧空间对角的补是函数可数的,则该空间是可数的","authors":"V. Tkachuk","doi":"10.1556/012.2021.58.3.1508","DOIUrl":null,"url":null,"abstract":"A space X is called functionally countable if ƒ (X) is countable for any continuous function ƒ : X → Ø. Given an infinite cardinal k, we prove that a compact scattered space K with d(K) > k must have a convergent k+-sequence. This result implies that a Corson compact space K is countable if the space (K × K) \\ ΔK is functionally countable; here ΔK = {(x, x): x ϵ K} is the diagonal of K. We also establish that, under Jensen’s Axiom ♦, there exists a compact hereditarily separable non-metrizable compact space X such that (X × X) \\ ΔX is functionally countable and show in ZFC that there exists a non-separable σ-compact space X such that (X × X) \\ ΔX is functionally countable.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"15 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Corson Compact Space is Countable if the Complement of its Diagonal is Functionally Countable\",\"authors\":\"V. Tkachuk\",\"doi\":\"10.1556/012.2021.58.3.1508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A space X is called functionally countable if ƒ (X) is countable for any continuous function ƒ : X → Ø. Given an infinite cardinal k, we prove that a compact scattered space K with d(K) > k must have a convergent k+-sequence. This result implies that a Corson compact space K is countable if the space (K × K) \\\\ ΔK is functionally countable; here ΔK = {(x, x): x ϵ K} is the diagonal of K. We also establish that, under Jensen’s Axiom ♦, there exists a compact hereditarily separable non-metrizable compact space X such that (X × X) \\\\ ΔX is functionally countable and show in ZFC that there exists a non-separable σ-compact space X such that (X × X) \\\\ ΔX is functionally countable.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2021.58.3.1508\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2021.58.3.1508","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

如果对于任意连续函数f: X→Ø, f (X)是可数的,则空间X称为函数可数的。给定一个无限基数k,证明了一个d(k) > k的紧散空间k必须有一个收敛的k+序列。该结果表明,如果空间(K × K) \ ΔK是函数可数的,则Corson紧空间K是可数的;这里ΔK = {(x, x): x λ K}是K的对角线。我们还证明了在Jensen公理♦下,存在一个紧的遗传可分的不可度量紧空间x,使得(x × x) \ ΔX是功能可数的,并证明了在ZFC中存在一个不可分的σ-紧空间x,使得(x × x) \ ΔX是功能可数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Corson Compact Space is Countable if the Complement of its Diagonal is Functionally Countable
A space X is called functionally countable if ƒ (X) is countable for any continuous function ƒ : X → Ø. Given an infinite cardinal k, we prove that a compact scattered space K with d(K) > k must have a convergent k+-sequence. This result implies that a Corson compact space K is countable if the space (K × K) \ ΔK is functionally countable; here ΔK = {(x, x): x ϵ K} is the diagonal of K. We also establish that, under Jensen’s Axiom ♦, there exists a compact hereditarily separable non-metrizable compact space X such that (X × X) \ ΔX is functionally countable and show in ZFC that there exists a non-separable σ-compact space X such that (X × X) \ ΔX is functionally countable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信