用于视觉识别的注释器原理

Jeff Donahue, K. Grauman
{"title":"用于视觉识别的注释器原理","authors":"Jeff Donahue, K. Grauman","doi":"10.1109/ICCV.2011.6126394","DOIUrl":null,"url":null,"abstract":"Traditional supervised visual learning simply asks annotators “what” label an image should have. We propose an approach for image classification problems requiring subjective judgment that also asks “why”, and uses that information to enrich the learned model. We develop two forms of visual annotator rationales: in the first, the annotator highlights the spatial region of interest he found most influential to the label selected, and in the second, he comments on the visual attributes that were most important. For either case, we show how to map the response to synthetic contrast examples, and then exploit an existing large-margin learning technique to refine the decision boundary accordingly. Results on multiple scene categorization and human attractiveness tasks show the promise of our approach, which can more accurately learn complex categories with the explanations behind the label choices.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"8 1","pages":"1395-1402"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Annotator rationales for visual recognition\",\"authors\":\"Jeff Donahue, K. Grauman\",\"doi\":\"10.1109/ICCV.2011.6126394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional supervised visual learning simply asks annotators “what” label an image should have. We propose an approach for image classification problems requiring subjective judgment that also asks “why”, and uses that information to enrich the learned model. We develop two forms of visual annotator rationales: in the first, the annotator highlights the spatial region of interest he found most influential to the label selected, and in the second, he comments on the visual attributes that were most important. For either case, we show how to map the response to synthetic contrast examples, and then exploit an existing large-margin learning technique to refine the decision boundary accordingly. Results on multiple scene categorization and human attractiveness tasks show the promise of our approach, which can more accurately learn complex categories with the explanations behind the label choices.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"8 1\",\"pages\":\"1395-1402\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

传统的监督式视觉学习只是问注释者图像应该有“什么”标签。我们提出了一种需要主观判断的图像分类问题的方法,该方法也会问“为什么”,并使用该信息来丰富学习模型。我们开发了两种形式的视觉注释器原理:在第一种形式中,注释器突出显示他发现对所选标签最有影响的感兴趣的空间区域,在第二种形式中,他对最重要的视觉属性进行评论。对于这两种情况,我们展示了如何将响应映射到综合对比示例,然后利用现有的大边际学习技术来相应地改进决策边界。在多场景分类和人类吸引力任务上的结果显示了我们的方法的前景,该方法可以更准确地学习复杂的类别,并提供标签选择背后的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annotator rationales for visual recognition
Traditional supervised visual learning simply asks annotators “what” label an image should have. We propose an approach for image classification problems requiring subjective judgment that also asks “why”, and uses that information to enrich the learned model. We develop two forms of visual annotator rationales: in the first, the annotator highlights the spatial region of interest he found most influential to the label selected, and in the second, he comments on the visual attributes that were most important. For either case, we show how to map the response to synthetic contrast examples, and then exploit an existing large-margin learning technique to refine the decision boundary accordingly. Results on multiple scene categorization and human attractiveness tasks show the promise of our approach, which can more accurately learn complex categories with the explanations behind the label choices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信