基于字典学习的高光谱视频压缩感知

L. Carin
{"title":"基于字典学习的高光谱视频压缩感知","authors":"L. Carin","doi":"10.1364/FIO.2012.FM4C.5","DOIUrl":null,"url":null,"abstract":"The proposed approach is capable of efficiently reconstructing large hyperspectral datacubes, including hyperspectral video. Comparisons are made between the proposed algorithm and other techniques employed in compressive sensing, dictionary learning and matrix factorization.","PeriodicalId":91683,"journal":{"name":"Frontiers in optics. Annual Meeting of the Optical Society of America","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dictionary Learning for Hyperspectral Video Compressive Sensing\",\"authors\":\"L. Carin\",\"doi\":\"10.1364/FIO.2012.FM4C.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed approach is capable of efficiently reconstructing large hyperspectral datacubes, including hyperspectral video. Comparisons are made between the proposed algorithm and other techniques employed in compressive sensing, dictionary learning and matrix factorization.\",\"PeriodicalId\":91683,\"journal\":{\"name\":\"Frontiers in optics. Annual Meeting of the Optical Society of America\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in optics. Annual Meeting of the Optical Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/FIO.2012.FM4C.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in optics. Annual Meeting of the Optical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/FIO.2012.FM4C.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该方法能够有效地重建包括高光谱视频在内的大型高光谱数据。将该算法与压缩感知、字典学习和矩阵分解等技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dictionary Learning for Hyperspectral Video Compressive Sensing
The proposed approach is capable of efficiently reconstructing large hyperspectral datacubes, including hyperspectral video. Comparisons are made between the proposed algorithm and other techniques employed in compressive sensing, dictionary learning and matrix factorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信