熔融镓的电阻率和热电功率:理论与实验

L. Ben Hassine, J. Auchet, J. Gasser
{"title":"熔融镓的电阻率和热电功率:理论与实验","authors":"L. Ben Hassine, J. Auchet, J. Gasser","doi":"10.1080/13642810208223160","DOIUrl":null,"url":null,"abstract":"Abstract We present our new accurate measurements on the electrical resistivity and thermopower of liquid gallium as a function of temperature. To interpret our experimental data we used, for the first time to our knowledge (earlier calculations used the pseudopotential formalism), ab initio calculations of the electrical resistivity ρ(E) and of the thermoelectric power Q(E) of liquid gallium as functions of energy. This formalism has the great advantage of including a full-energy dependent calculation of the thermopower. To construct the phase shifts we used the experimental pair correlation function. To calculate the resistivity and thermopower we used both the structure factor obtained experimentally and that calculated with hard spheres. The results are compared and discussed. Various potentials based on the Hartree-Fock formalism and using different exchange contributions have been used. Overall agreement between calculation and experiment is obtained. It seems, however, that the Kohn-Sham value of the X-α Slater approximation gives results closer to experiment than the Slater value for both resistivity and thermopower. Subsequently, the problem of the sign of the thermopower of liquid metals is discussed and explained.","PeriodicalId":20016,"journal":{"name":"Philosophical Magazine Part B","volume":"63 1","pages":"1225 - 1237"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Electrical resistivity and thermoelectric power of molten gallium: Theory versus experiment\",\"authors\":\"L. Ben Hassine, J. Auchet, J. Gasser\",\"doi\":\"10.1080/13642810208223160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present our new accurate measurements on the electrical resistivity and thermopower of liquid gallium as a function of temperature. To interpret our experimental data we used, for the first time to our knowledge (earlier calculations used the pseudopotential formalism), ab initio calculations of the electrical resistivity ρ(E) and of the thermoelectric power Q(E) of liquid gallium as functions of energy. This formalism has the great advantage of including a full-energy dependent calculation of the thermopower. To construct the phase shifts we used the experimental pair correlation function. To calculate the resistivity and thermopower we used both the structure factor obtained experimentally and that calculated with hard spheres. The results are compared and discussed. Various potentials based on the Hartree-Fock formalism and using different exchange contributions have been used. Overall agreement between calculation and experiment is obtained. It seems, however, that the Kohn-Sham value of the X-α Slater approximation gives results closer to experiment than the Slater value for both resistivity and thermopower. Subsequently, the problem of the sign of the thermopower of liquid metals is discussed and explained.\",\"PeriodicalId\":20016,\"journal\":{\"name\":\"Philosophical Magazine Part B\",\"volume\":\"63 1\",\"pages\":\"1225 - 1237\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13642810208223160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13642810208223160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

摘要本文提出了一种新的精确测量液镓电阻率和热功率随温度变化的方法。为了解释我们的实验数据,据我们所知,我们第一次使用了(早期的计算使用了伪势形式),从头计算了液态镓的电阻率ρ(E)和热电功率Q(E)作为能量的函数。这种形式有一个很大的优点,它包含了一个完全依赖能量的热功率计算。为了构造相移,我们使用了实验对相关函数。为了计算电阻率和热功率,我们采用了实验得到的结构因子和硬球计算得到的结构因子。对结果进行了比较和讨论。基于Hartree-Fock形式主义和使用不同的交换贡献的各种势被使用。计算结果与实验结果基本吻合。然而,对于电阻率和热功率,X-α Slater近似的Kohn-Sham值似乎比Slater值更接近实验结果。接着,讨论并解释了液态金属热功率的符号问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical resistivity and thermoelectric power of molten gallium: Theory versus experiment
Abstract We present our new accurate measurements on the electrical resistivity and thermopower of liquid gallium as a function of temperature. To interpret our experimental data we used, for the first time to our knowledge (earlier calculations used the pseudopotential formalism), ab initio calculations of the electrical resistivity ρ(E) and of the thermoelectric power Q(E) of liquid gallium as functions of energy. This formalism has the great advantage of including a full-energy dependent calculation of the thermopower. To construct the phase shifts we used the experimental pair correlation function. To calculate the resistivity and thermopower we used both the structure factor obtained experimentally and that calculated with hard spheres. The results are compared and discussed. Various potentials based on the Hartree-Fock formalism and using different exchange contributions have been used. Overall agreement between calculation and experiment is obtained. It seems, however, that the Kohn-Sham value of the X-α Slater approximation gives results closer to experiment than the Slater value for both resistivity and thermopower. Subsequently, the problem of the sign of the thermopower of liquid metals is discussed and explained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信