pBluescript ΙΙ SK衍生t载体的构建,阳性选择标记,快速克隆系统

F. Moradian, S. Alavi
{"title":"pBluescript ΙΙ SK衍生t载体的构建,阳性选择标记,快速克隆系统","authors":"F. Moradian, S. Alavi","doi":"10.22059/PBS.2020.278914.1333","DOIUrl":null,"url":null,"abstract":"A rapid DNA cloning system is a research interest of many scientists. TA cloning is one of the methods used for the cloning of PCR-amplified DNA molecules. The TA cloning method is a convenient and labor-saving replacement to traditional, restriction enzyme-mediated cloning strategies. A T-vector called pBlueskript ΙΙ SK-1 with the lethal gene ccdB was designed to construct a positive selection vector. This lethal gene was inserted in multiple cloning sites of pBlueskript ΙΙ SK. Then the vector digested with the endonuclease SmaΙ producing the blunt end. To directly clone the PCR product, a single 3'-A was added to a double-stranded DNA fragment by Taq polymerase and a T-vector with 3'-T overhang at each end using ddTTP and terminal transferase enzyme. The recombinant vector was transferred to the competent cells of host Escherichia coli. After DNA fragment entry, the activity of the ccdB gene eliminated, and the survival probability and host colony formation increased after transformation with the recombinant vector. The proliferation of the host of the T-vector was highly specific, and only hosts with the ccdA gene were able to receive this vector, to replicate the vector and survive. Therefore, after the insertion of the target gene, the lethal gene becomes inactivated, so there was no need to use a specific host and other selective markers, such as antibiotics. The TA cloning with a positive selection marker strategy is both simple and much more efficient than blunt-ended ligation and cohesive-end cloning.","PeriodicalId":20726,"journal":{"name":"Progress in Biological Sciences","volume":"20 1","pages":"199-205"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of T-vector derived from pBluescript ΙΙ SK with a positive selection marker, a rapid system for cloning\",\"authors\":\"F. Moradian, S. Alavi\",\"doi\":\"10.22059/PBS.2020.278914.1333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A rapid DNA cloning system is a research interest of many scientists. TA cloning is one of the methods used for the cloning of PCR-amplified DNA molecules. The TA cloning method is a convenient and labor-saving replacement to traditional, restriction enzyme-mediated cloning strategies. A T-vector called pBlueskript ΙΙ SK-1 with the lethal gene ccdB was designed to construct a positive selection vector. This lethal gene was inserted in multiple cloning sites of pBlueskript ΙΙ SK. Then the vector digested with the endonuclease SmaΙ producing the blunt end. To directly clone the PCR product, a single 3'-A was added to a double-stranded DNA fragment by Taq polymerase and a T-vector with 3'-T overhang at each end using ddTTP and terminal transferase enzyme. The recombinant vector was transferred to the competent cells of host Escherichia coli. After DNA fragment entry, the activity of the ccdB gene eliminated, and the survival probability and host colony formation increased after transformation with the recombinant vector. The proliferation of the host of the T-vector was highly specific, and only hosts with the ccdA gene were able to receive this vector, to replicate the vector and survive. Therefore, after the insertion of the target gene, the lethal gene becomes inactivated, so there was no need to use a specific host and other selective markers, such as antibiotics. The TA cloning with a positive selection marker strategy is both simple and much more efficient than blunt-ended ligation and cohesive-end cloning.\",\"PeriodicalId\":20726,\"journal\":{\"name\":\"Progress in Biological Sciences\",\"volume\":\"20 1\",\"pages\":\"199-205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/PBS.2020.278914.1333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/PBS.2020.278914.1333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速的DNA克隆系统是许多科学家感兴趣的研究课题。TA克隆是用于克隆pcr扩增DNA分子的方法之一。与传统的限制性内切酶介导的克隆策略相比,TA克隆方法是一种方便、省力的替代方法。设计含有致死基因ccdB的t载体pBlueskript ΙΙ SK-1构建阳性选择载体。将该致死基因插入pblueskscript ΙΙ SK的多个克隆位点,用核酸内切酶SmaΙ对载体进行酶切,产生钝端。为了直接克隆PCR产物,通过Taq聚合酶在双链DNA片段上加入单个3'-A,并通过ddTTP和末端转移酶在两端各加入一个3'-T悬垂的t载体。将重组载体转染到宿主大肠杆菌的感受态细胞中。DNA片段进入后,ccdB基因活性被消除,用重组载体转化后,存活几率和宿主菌落形成增加。t载体对宿主的增殖具有高度特异性,只有携带ccdA基因的宿主才能接受该载体,复制该载体并存活。因此,靶基因插入后,致死基因失活,因此不需要使用特定宿主和其他选择性标记,如抗生素。与钝端连接和内聚端克隆相比,采用正选择标记策略克隆TA既简单又高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of T-vector derived from pBluescript ΙΙ SK with a positive selection marker, a rapid system for cloning
A rapid DNA cloning system is a research interest of many scientists. TA cloning is one of the methods used for the cloning of PCR-amplified DNA molecules. The TA cloning method is a convenient and labor-saving replacement to traditional, restriction enzyme-mediated cloning strategies. A T-vector called pBlueskript ΙΙ SK-1 with the lethal gene ccdB was designed to construct a positive selection vector. This lethal gene was inserted in multiple cloning sites of pBlueskript ΙΙ SK. Then the vector digested with the endonuclease SmaΙ producing the blunt end. To directly clone the PCR product, a single 3'-A was added to a double-stranded DNA fragment by Taq polymerase and a T-vector with 3'-T overhang at each end using ddTTP and terminal transferase enzyme. The recombinant vector was transferred to the competent cells of host Escherichia coli. After DNA fragment entry, the activity of the ccdB gene eliminated, and the survival probability and host colony formation increased after transformation with the recombinant vector. The proliferation of the host of the T-vector was highly specific, and only hosts with the ccdA gene were able to receive this vector, to replicate the vector and survive. Therefore, after the insertion of the target gene, the lethal gene becomes inactivated, so there was no need to use a specific host and other selective markers, such as antibiotics. The TA cloning with a positive selection marker strategy is both simple and much more efficient than blunt-ended ligation and cohesive-end cloning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信