使用Git历史指标和提交的软件故障严重性预测

Herimanitra Ranaivoson, M. Badri
{"title":"使用Git历史指标和提交的软件故障严重性预测","authors":"Herimanitra Ranaivoson, M. Badri","doi":"10.17706/jsw.17.2.36-47","DOIUrl":null,"url":null,"abstract":"In this paper, we propose new software agnostic metrics extracted from Git history. We compared the proposed metrics to many traditional code-based metrics in terms of fault severity prediction. We used three Machine Learning Algorithms (Random Forest, SVM and Multilayer Perceptron) to build the prediction models. We used data (source code, source code metrics, fault severity information) collected from three different data sources. Results show that the proposed software agnostic metrics perform better in terms of fault severity prediction compared to traditional code-based metrics. They were able to achieve 84% of accuracy in fault severity prediction. We also introduced some terms extracted from commits and showed their effectiveness for fault severity classification.","PeriodicalId":11452,"journal":{"name":"e Informatica Softw. Eng. J.","volume":"387 1","pages":"36-47"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software Fault Severity Prediction Using Git History Metrics and Commits\",\"authors\":\"Herimanitra Ranaivoson, M. Badri\",\"doi\":\"10.17706/jsw.17.2.36-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose new software agnostic metrics extracted from Git history. We compared the proposed metrics to many traditional code-based metrics in terms of fault severity prediction. We used three Machine Learning Algorithms (Random Forest, SVM and Multilayer Perceptron) to build the prediction models. We used data (source code, source code metrics, fault severity information) collected from three different data sources. Results show that the proposed software agnostic metrics perform better in terms of fault severity prediction compared to traditional code-based metrics. They were able to achieve 84% of accuracy in fault severity prediction. We also introduced some terms extracted from commits and showed their effectiveness for fault severity classification.\",\"PeriodicalId\":11452,\"journal\":{\"name\":\"e Informatica Softw. Eng. J.\",\"volume\":\"387 1\",\"pages\":\"36-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e Informatica Softw. Eng. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17706/jsw.17.2.36-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e Informatica Softw. Eng. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/jsw.17.2.36-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了从Git历史中提取的新的软件不可知指标。在故障严重性预测方面,我们将提出的度量与许多传统的基于代码的度量进行了比较。我们使用了三种机器学习算法(随机森林、支持向量机和多层感知机)来构建预测模型。我们使用了从三个不同的数据源收集的数据(源代码、源代码度量、故障严重性信息)。结果表明,与传统的基于代码的度量相比,所提出的软件不可知度量在故障严重性预测方面表现更好。他们能够在故障严重程度预测中达到84%的准确率。我们还介绍了从提交中提取的一些术语,并展示了它们对故障严重性分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software Fault Severity Prediction Using Git History Metrics and Commits
In this paper, we propose new software agnostic metrics extracted from Git history. We compared the proposed metrics to many traditional code-based metrics in terms of fault severity prediction. We used three Machine Learning Algorithms (Random Forest, SVM and Multilayer Perceptron) to build the prediction models. We used data (source code, source code metrics, fault severity information) collected from three different data sources. Results show that the proposed software agnostic metrics perform better in terms of fault severity prediction compared to traditional code-based metrics. They were able to achieve 84% of accuracy in fault severity prediction. We also introduced some terms extracted from commits and showed their effectiveness for fault severity classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信