{"title":"具有高效机电耦合系数的高频非填充层状对称压电材料的研究","authors":"Tian Rong, Chenxu Wang","doi":"10.1080/07315171.2023.2189848","DOIUrl":null,"url":null,"abstract":"Abstract As the demand for high-performance hydrophones for marine communication systems grows, this paper develops a high-frequency unfilled layered symmetrical piezoelectric material with high effective electromechanical coupling coefficient. The vibration mode of piezoelectric material is converted into vibration mode of the piezoelectric pillar to improve the effective electromechanical coupling coefficient of the material. The material is determined by the equivalent circuit method and ANSYS finite element simulation method. Test results show that the resonant frequency is 117.8 kHz and the effective electromechanical coupling coefficient is 0.67, which shows that the developed material has a good electromechanical conversion performance.","PeriodicalId":50451,"journal":{"name":"Ferroelectrics Letters Section","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on a high-frequency unfilled layered symmetrical piezoelectric material with a high effective electromechanical coupling coefficient\",\"authors\":\"Tian Rong, Chenxu Wang\",\"doi\":\"10.1080/07315171.2023.2189848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As the demand for high-performance hydrophones for marine communication systems grows, this paper develops a high-frequency unfilled layered symmetrical piezoelectric material with high effective electromechanical coupling coefficient. The vibration mode of piezoelectric material is converted into vibration mode of the piezoelectric pillar to improve the effective electromechanical coupling coefficient of the material. The material is determined by the equivalent circuit method and ANSYS finite element simulation method. Test results show that the resonant frequency is 117.8 kHz and the effective electromechanical coupling coefficient is 0.67, which shows that the developed material has a good electromechanical conversion performance.\",\"PeriodicalId\":50451,\"journal\":{\"name\":\"Ferroelectrics Letters Section\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferroelectrics Letters Section\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/07315171.2023.2189848\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferroelectrics Letters Section","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/07315171.2023.2189848","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Research on a high-frequency unfilled layered symmetrical piezoelectric material with a high effective electromechanical coupling coefficient
Abstract As the demand for high-performance hydrophones for marine communication systems grows, this paper develops a high-frequency unfilled layered symmetrical piezoelectric material with high effective electromechanical coupling coefficient. The vibration mode of piezoelectric material is converted into vibration mode of the piezoelectric pillar to improve the effective electromechanical coupling coefficient of the material. The material is determined by the equivalent circuit method and ANSYS finite element simulation method. Test results show that the resonant frequency is 117.8 kHz and the effective electromechanical coupling coefficient is 0.67, which shows that the developed material has a good electromechanical conversion performance.
期刊介绍:
Ferroelectrics Letters is a separately published section of the international journal Ferroelectrics. Both sections publish theoretical, experimental and applied papers on ferroelectrics and related materials, including ferroelastics, ferroelectric ferromagnetics, electrooptics, piezoelectrics, pyroelectrics, nonlinear dielectrics, polymers and liquid crystals.
Ferroelectrics Letters permits the rapid publication of important, quality, short original papers on the theory, synthesis, properties and applications of ferroelectrics and related materials.