$\ mathm {PG}(3,\mathbb R)$上的正则并行性允许2环体动作

Pub Date : 2021-01-14 DOI:10.36045/j.bbms.210114
Rainer Lowen, Gunter F. Steinke
{"title":"$\\ mathm {PG}(3,\\mathbb R)$上的正则并行性允许2环体动作","authors":"Rainer Lowen, Gunter F. Steinke","doi":"10.36045/j.bbms.210114","DOIUrl":null,"url":null,"abstract":"A regular parallelism of real projective 3-space PG(3,R) is an equivalence relation on the line space such that every class is equivalent to the set of 1-dimensional complex subspaces of a 2-dimensional complex vector space. We shall assume that the set of classes is compact, and characterize those regular parallelisms that admit an action of a 2-dimensional torus group. We prove that there is a one-dimensional subtorus fixing every parallel class. From this property alone we deduce that the parallelism is a 2- or 3-dimensional regular parallelism in the sense of Betten and Riesinger. If a 2-torus acts, then the parallelism can be described using a so-called generalized line star which admits a 1-torus action. We also study examples of such parallelisms by constructing generalized line stars. In particular, we prove a claim which was presented by Betten and Riesinger with an incorrect proof. The present article continues a series of papers by the first author on parallelisms with large groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regular parallelisms on $\\\\mathrm{PG}(3,\\\\mathbb R)$ admitting a 2-torus action\",\"authors\":\"Rainer Lowen, Gunter F. Steinke\",\"doi\":\"10.36045/j.bbms.210114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A regular parallelism of real projective 3-space PG(3,R) is an equivalence relation on the line space such that every class is equivalent to the set of 1-dimensional complex subspaces of a 2-dimensional complex vector space. We shall assume that the set of classes is compact, and characterize those regular parallelisms that admit an action of a 2-dimensional torus group. We prove that there is a one-dimensional subtorus fixing every parallel class. From this property alone we deduce that the parallelism is a 2- or 3-dimensional regular parallelism in the sense of Betten and Riesinger. If a 2-torus acts, then the parallelism can be described using a so-called generalized line star which admits a 1-torus action. We also study examples of such parallelisms by constructing generalized line stars. In particular, we prove a claim which was presented by Betten and Riesinger with an incorrect proof. The present article continues a series of papers by the first author on parallelisms with large groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.36045/j.bbms.210114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.210114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

实射影三维空间PG(3,R)的正则平行性是直线空间上的等价关系,使得每一类都等价于二维复向量空间的一维复子空间的集合。我们将假定类的集合是紧的,并刻画那些允许二维环面群作用的规则并行。证明了每一个平行类都存在一个固定的一维子环。仅从这个性质我们就可以推导出平行度是Betten和Riesinger意义上的二维或三维正则平行度。如果是2环面作用,那么平行度可以用所谓的广义线星来描述,它允许1环面作用。我们还通过构造广义线星来研究这种并行性的例子。特别是,我们用错误的证明证明了Betten和Riesinger提出的一个主张。本文是第一作者关于大群并行性的一系列论文的延续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Regular parallelisms on $\mathrm{PG}(3,\mathbb R)$ admitting a 2-torus action
A regular parallelism of real projective 3-space PG(3,R) is an equivalence relation on the line space such that every class is equivalent to the set of 1-dimensional complex subspaces of a 2-dimensional complex vector space. We shall assume that the set of classes is compact, and characterize those regular parallelisms that admit an action of a 2-dimensional torus group. We prove that there is a one-dimensional subtorus fixing every parallel class. From this property alone we deduce that the parallelism is a 2- or 3-dimensional regular parallelism in the sense of Betten and Riesinger. If a 2-torus acts, then the parallelism can be described using a so-called generalized line star which admits a 1-torus action. We also study examples of such parallelisms by constructing generalized line stars. In particular, we prove a claim which was presented by Betten and Riesinger with an incorrect proof. The present article continues a series of papers by the first author on parallelisms with large groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信