逆最小圆定位问题

Q3 Decision Sciences
Mehraneh Gholami, J. Fathali
{"title":"逆最小圆定位问题","authors":"Mehraneh Gholami, J. Fathali","doi":"10.2298/yjor200715027g","DOIUrl":null,"url":null,"abstract":"Let n weighted points be given in the plane. The inverse version of the minisum circle location problem deals with modifying the weights of points with minimum cost, such that the sum of the weighted distances from the circumference of a given circle C with radius r, to the given points is minimized. The classical model of this problem contains infinite constraints. In this paper, a mathematical model with finite constraints is presented. Then an efficient method is developed for solving this problem.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The inverse minisum circle location problem\",\"authors\":\"Mehraneh Gholami, J. Fathali\",\"doi\":\"10.2298/yjor200715027g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let n weighted points be given in the plane. The inverse version of the minisum circle location problem deals with modifying the weights of points with minimum cost, such that the sum of the weighted distances from the circumference of a given circle C with radius r, to the given points is minimized. The classical model of this problem contains infinite constraints. In this paper, a mathematical model with finite constraints is presented. Then an efficient method is developed for solving this problem.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/yjor200715027g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/yjor200715027g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

摘要

平面上给定n个加权点。最小圆定位问题的相反版本处理以最小代价修改点的权值,使得从半径为r的给定圆的圆周C到给定点的加权距离之和最小。该问题的经典模型包含无限约束。本文建立了一个有限约束的数学模型。在此基础上,提出了一种求解该问题的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The inverse minisum circle location problem
Let n weighted points be given in the plane. The inverse version of the minisum circle location problem deals with modifying the weights of points with minimum cost, such that the sum of the weighted distances from the circumference of a given circle C with radius r, to the given points is minimized. The classical model of this problem contains infinite constraints. In this paper, a mathematical model with finite constraints is presented. Then an efficient method is developed for solving this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yugoslav Journal of Operations Research
Yugoslav Journal of Operations Research Decision Sciences-Management Science and Operations Research
CiteScore
2.50
自引率
0.00%
发文量
14
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信