{"title":"不饱和脂肪酸作为生物活性食品成分的功效和生物医学作用","authors":"Morteza Vaezi","doi":"10.2174/2212796817666230222103441","DOIUrl":null,"url":null,"abstract":"\n\nUnsaturated fatty acids (UFAs) as bioactive compounds possess a wide range of biomedical functions and a lack or shortage of them may cause serious harm to human body health. Biochemically, UFAs have attracted growing interest, and this attention arises not only from biomedical reasons but also economic ones. Among these fatty acids, omega-3 and omega-6 fatty acids are considered the most efficient and safe compounds which can be used for expanding and identification of novel functionalities. They are considered essential membrane components and are associated with a variety of biological processes. For example, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as polyunsaturated fatty acids (PUFAs) play a central role in the proper functioning of the nervous system like anti-atherogenic properties and improve the functioning of the cardiovascular system. Briefly, understanding the relationship between these properties and potential biomedical applications of UFAs may help to elucidate and facilitate the development of novel pathogenesis strategies regarding their disorders in human health and diseases. This review provides the most suitable functional roles and potential mechanisms of UFAs associated with human health and nutrition.\n","PeriodicalId":10784,"journal":{"name":"Current Chemical Biology","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy and Biomedical Roles of Unsaturated Fatty Acids as Bioactive Food Components\",\"authors\":\"Morteza Vaezi\",\"doi\":\"10.2174/2212796817666230222103441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nUnsaturated fatty acids (UFAs) as bioactive compounds possess a wide range of biomedical functions and a lack or shortage of them may cause serious harm to human body health. Biochemically, UFAs have attracted growing interest, and this attention arises not only from biomedical reasons but also economic ones. Among these fatty acids, omega-3 and omega-6 fatty acids are considered the most efficient and safe compounds which can be used for expanding and identification of novel functionalities. They are considered essential membrane components and are associated with a variety of biological processes. For example, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as polyunsaturated fatty acids (PUFAs) play a central role in the proper functioning of the nervous system like anti-atherogenic properties and improve the functioning of the cardiovascular system. Briefly, understanding the relationship between these properties and potential biomedical applications of UFAs may help to elucidate and facilitate the development of novel pathogenesis strategies regarding their disorders in human health and diseases. This review provides the most suitable functional roles and potential mechanisms of UFAs associated with human health and nutrition.\\n\",\"PeriodicalId\":10784,\"journal\":{\"name\":\"Current Chemical Biology\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Chemical Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2212796817666230222103441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2212796817666230222103441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficacy and Biomedical Roles of Unsaturated Fatty Acids as Bioactive Food Components
Unsaturated fatty acids (UFAs) as bioactive compounds possess a wide range of biomedical functions and a lack or shortage of them may cause serious harm to human body health. Biochemically, UFAs have attracted growing interest, and this attention arises not only from biomedical reasons but also economic ones. Among these fatty acids, omega-3 and omega-6 fatty acids are considered the most efficient and safe compounds which can be used for expanding and identification of novel functionalities. They are considered essential membrane components and are associated with a variety of biological processes. For example, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as polyunsaturated fatty acids (PUFAs) play a central role in the proper functioning of the nervous system like anti-atherogenic properties and improve the functioning of the cardiovascular system. Briefly, understanding the relationship between these properties and potential biomedical applications of UFAs may help to elucidate and facilitate the development of novel pathogenesis strategies regarding their disorders in human health and diseases. This review provides the most suitable functional roles and potential mechanisms of UFAs associated with human health and nutrition.
期刊介绍:
Current Chemical Biology aims to publish full-length and mini reviews on exciting new developments at the chemistry-biology interface, covering topics relating to Chemical Synthesis, Science at Chemistry-Biology Interface and Chemical Mechanisms of Biological Systems. Current Chemical Biology covers the following areas: Chemical Synthesis (Syntheses of biologically important macromolecules including proteins, polypeptides, oligonucleotides, oligosaccharides etc.; Asymmetric synthesis; Combinatorial synthesis; Diversity-oriented synthesis; Template-directed synthesis; Biomimetic synthesis; Solid phase biomolecular synthesis; Synthesis of small biomolecules: amino acids, peptides, lipids, carbohydrates and nucleosides; and Natural product synthesis).