契约边界上的等价拓扑

Pub Date : 2022-06-16 DOI:10.3336/gm.58.1.06
Vivian He
{"title":"契约边界上的等价拓扑","authors":"Vivian He","doi":"10.3336/gm.58.1.06","DOIUrl":null,"url":null,"abstract":"The contracting boundary of a proper geodesic metric space generalizes the Gromov boundary of a hyperbolic space. It consists of contracting geodesics up to bounded Hausdorff distances. Another generalization of the Gromov boundary is the \\(\\kappa\\)–Morse boundary with a sublinear function \\(\\kappa\\). The two generalizations model the Gromov boundary based on different characteristics of geodesics in Gromov hyperbolic spaces. It was suspected that the \\(\\kappa\\)–Morse boundary contains the contracting boundary. We will prove this conjecture: when \\(\\kappa =1\\) is the constant function, the 1-Morse boundary and the contracting boundary are equivalent as topological spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Equivalent topologies on the contracting boundary\",\"authors\":\"Vivian He\",\"doi\":\"10.3336/gm.58.1.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contracting boundary of a proper geodesic metric space generalizes the Gromov boundary of a hyperbolic space. It consists of contracting geodesics up to bounded Hausdorff distances. Another generalization of the Gromov boundary is the \\\\(\\\\kappa\\\\)–Morse boundary with a sublinear function \\\\(\\\\kappa\\\\). The two generalizations model the Gromov boundary based on different characteristics of geodesics in Gromov hyperbolic spaces. It was suspected that the \\\\(\\\\kappa\\\\)–Morse boundary contains the contracting boundary. We will prove this conjecture: when \\\\(\\\\kappa =1\\\\) is the constant function, the 1-Morse boundary and the contracting boundary are equivalent as topological spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.58.1.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.58.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

固有测地线度量空间的收缩边界推广了双曲空间的格罗莫夫边界。它包括将测地线压缩到有界的豪斯多夫距离。Gromov边界的另一个推广是具有次线性函数\(\kappa\)的\(\kappa\) -Morse边界。这两种推广基于Gromov双曲空间中测地线的不同特征建立了Gromov边界模型。我们怀疑\(\kappa\) -Morse边界包含收缩边界。我们将证明这个猜想:当\(\kappa =1\)为常数函数时,1-Morse边界与收缩边界等效为拓扑空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equivalent topologies on the contracting boundary
The contracting boundary of a proper geodesic metric space generalizes the Gromov boundary of a hyperbolic space. It consists of contracting geodesics up to bounded Hausdorff distances. Another generalization of the Gromov boundary is the \(\kappa\)–Morse boundary with a sublinear function \(\kappa\). The two generalizations model the Gromov boundary based on different characteristics of geodesics in Gromov hyperbolic spaces. It was suspected that the \(\kappa\)–Morse boundary contains the contracting boundary. We will prove this conjecture: when \(\kappa =1\) is the constant function, the 1-Morse boundary and the contracting boundary are equivalent as topological spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信