HRVTool -一个开源的Matlab工具箱,用于分析心率变异性

M. Vollmer
{"title":"HRVTool -一个开源的Matlab工具箱,用于分析心率变异性","authors":"M. Vollmer","doi":"10.22489/cinc.2019.032","DOIUrl":null,"url":null,"abstract":"Motivation: Many software tools for ECG processing are commercial. New innovative and alternative features for heart rate variability analysis (HRV) and improved methods in ECG preprocessing cannot be incorporated. Moreover, software manuals are lacking of clarity and often conceal the exact calculation methods that makes clinical interpretation difficult, and reproducibility is reduced. Software description: HRVTool provides an opensource and intuitive user-friendly environment for the HRV analysis in Matlab. The software is available at http://marcusvollmer.github.io/HRV and supports the processing of ECG, pulsatile waveforms and RR intervals from various sources (mat and text files containing raw data, Polar, PhysioNet, Hexoskin, BIOPAC, European Data Format, ISHNE Holter Standard Format, and Machine-Independent Beat files). An integrated heart beat detector locates R peaks or pulse waves. Visual inspection, and manual adjustments of beat locations are possible and the corresponding annotation file can be saved in a standard Matlab format or as a delimited text file. HRV statistics are computed in a sliding window to evaluate the alteration over time. HRV metrics can be exported. An animation of intervals supports pattern identification. Moreover the Matlab class (HRV.m) includes functions for windowed HRV computation that can be used for batch processing.","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"HRVTool - an Open-Source Matlab Toolbox for Analyzing Heart Rate Variability\",\"authors\":\"M. Vollmer\",\"doi\":\"10.22489/cinc.2019.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivation: Many software tools for ECG processing are commercial. New innovative and alternative features for heart rate variability analysis (HRV) and improved methods in ECG preprocessing cannot be incorporated. Moreover, software manuals are lacking of clarity and often conceal the exact calculation methods that makes clinical interpretation difficult, and reproducibility is reduced. Software description: HRVTool provides an opensource and intuitive user-friendly environment for the HRV analysis in Matlab. The software is available at http://marcusvollmer.github.io/HRV and supports the processing of ECG, pulsatile waveforms and RR intervals from various sources (mat and text files containing raw data, Polar, PhysioNet, Hexoskin, BIOPAC, European Data Format, ISHNE Holter Standard Format, and Machine-Independent Beat files). An integrated heart beat detector locates R peaks or pulse waves. Visual inspection, and manual adjustments of beat locations are possible and the corresponding annotation file can be saved in a standard Matlab format or as a delimited text file. HRV statistics are computed in a sliding window to evaluate the alteration over time. HRV metrics can be exported. An animation of intervals supports pattern identification. Moreover the Matlab class (HRV.m) includes functions for windowed HRV computation that can be used for batch processing.\",\"PeriodicalId\":6716,\"journal\":{\"name\":\"2019 Computing in Cardiology Conference (CinC)\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/cinc.2019.032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2019.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

动机:许多用于ECG处理的软件工具都是商业化的。新的创新和替代功能的心率变异性分析(HRV)和改进的方法在ECG预处理不能被纳入。此外,软件手册缺乏清晰度,经常隐藏精确的计算方法,使临床解释困难,可重复性降低。软件描述:HRVTool为Matlab中的HRV分析提供了一个开源和直观的用户友好环境。该软件可在http://marcusvollmer.github.io/HRV上获得,支持处理来自各种来源的ECG,脉冲波形和RR间隔(包含原始数据的mat和文本文件,Polar, PhysioNet, Hexoskin, BIOPAC,欧洲数据格式,ISHNE Holter标准格式和机器独立节拍文件)。集成心跳检测器定位R峰或脉搏波。目视检查和手动调整节拍位置是可能的,相应的注释文件可以保存为标准的Matlab格式或作为分隔的文本文件。在滑动窗口中计算HRV统计数据,以评估随时间的变化。HRV指标可以导出。间隔动画支持模式识别。此外,Matlab类(HRV.m)还包含了可用于批处理的窗口HRV计算函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HRVTool - an Open-Source Matlab Toolbox for Analyzing Heart Rate Variability
Motivation: Many software tools for ECG processing are commercial. New innovative and alternative features for heart rate variability analysis (HRV) and improved methods in ECG preprocessing cannot be incorporated. Moreover, software manuals are lacking of clarity and often conceal the exact calculation methods that makes clinical interpretation difficult, and reproducibility is reduced. Software description: HRVTool provides an opensource and intuitive user-friendly environment for the HRV analysis in Matlab. The software is available at http://marcusvollmer.github.io/HRV and supports the processing of ECG, pulsatile waveforms and RR intervals from various sources (mat and text files containing raw data, Polar, PhysioNet, Hexoskin, BIOPAC, European Data Format, ISHNE Holter Standard Format, and Machine-Independent Beat files). An integrated heart beat detector locates R peaks or pulse waves. Visual inspection, and manual adjustments of beat locations are possible and the corresponding annotation file can be saved in a standard Matlab format or as a delimited text file. HRV statistics are computed in a sliding window to evaluate the alteration over time. HRV metrics can be exported. An animation of intervals supports pattern identification. Moreover the Matlab class (HRV.m) includes functions for windowed HRV computation that can be used for batch processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信