{"title":"1.1.2钯/铜和钯/镍双催化","authors":"O. Riant, S. Rout","doi":"10.1055/sos-sd-231-00004","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed significant advances in molecular synthesis through rationally designed dual catalysis. Major achievements in dual catalysis have been accomplished with the aid of highly chemoselective palladium/copper and palladium/nickel catalyst systems. These examples have showcased the full compatibility of transition-metal catalysts with one another. To date, numerous examples of palladium/copper or palladium/nickel catalysis have been successfully performed, demonstrating the achievement of chemical syntheses via greener processes with alternative energy sources.","PeriodicalId":11383,"journal":{"name":"Dual Catalysis in Organic Synthesis 1","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1.1.2 Palladium/Copper and Palladium/Nickel Dual Catalysis\",\"authors\":\"O. Riant, S. Rout\",\"doi\":\"10.1055/sos-sd-231-00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed significant advances in molecular synthesis through rationally designed dual catalysis. Major achievements in dual catalysis have been accomplished with the aid of highly chemoselective palladium/copper and palladium/nickel catalyst systems. These examples have showcased the full compatibility of transition-metal catalysts with one another. To date, numerous examples of palladium/copper or palladium/nickel catalysis have been successfully performed, demonstrating the achievement of chemical syntheses via greener processes with alternative energy sources.\",\"PeriodicalId\":11383,\"journal\":{\"name\":\"Dual Catalysis in Organic Synthesis 1\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dual Catalysis in Organic Synthesis 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/sos-sd-231-00004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dual Catalysis in Organic Synthesis 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/sos-sd-231-00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
1.1.2 Palladium/Copper and Palladium/Nickel Dual Catalysis
Recent years have witnessed significant advances in molecular synthesis through rationally designed dual catalysis. Major achievements in dual catalysis have been accomplished with the aid of highly chemoselective palladium/copper and palladium/nickel catalyst systems. These examples have showcased the full compatibility of transition-metal catalysts with one another. To date, numerous examples of palladium/copper or palladium/nickel catalysis have been successfully performed, demonstrating the achievement of chemical syntheses via greener processes with alternative energy sources.