{"title":"实例抓取的约束共注意网络","authors":"Junhao Cai, X. Tao, Hui Cheng, Zhanpeng Zhang","doi":"10.1109/ICRA40945.2020.9197182","DOIUrl":null,"url":null,"abstract":"Instance grasping is a challenging robotic grasping task when a robot aims to grasp a specified target object in cluttered scenes. In this paper, we propose a novel end-to-end instance grasping method using only monocular workspace and query images, where the workspace image includes several objects and the query image only contains the target object. To effectively extract discriminative features and facilitate the training process, a learning-based method, referred to as Constraint Co-Attention Network (CCAN), is proposed which consists of a constraint co-attention module and a grasp affordance predictor. An effective co-attention module is presented to construct the features of a workspace image from the extracted features of the query image. By introducing soft constraints into the co-attention module, it highlights the target object’s features while trivializes other objects’ features in the workspace image. Using the features extracted from the co-attention module, the cascaded grasp affordance interpreter network only predicts the grasp configuration for the target object. The training of the CCAN is totally based on simulated self-supervision. Extensive qualitative and quantitative experiments show the effectiveness of our method both in simulated and real-world environments even for totally unseen objects.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"8 1","pages":"8353-8359"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"CCAN: Constraint Co-Attention Network for Instance Grasping\",\"authors\":\"Junhao Cai, X. Tao, Hui Cheng, Zhanpeng Zhang\",\"doi\":\"10.1109/ICRA40945.2020.9197182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instance grasping is a challenging robotic grasping task when a robot aims to grasp a specified target object in cluttered scenes. In this paper, we propose a novel end-to-end instance grasping method using only monocular workspace and query images, where the workspace image includes several objects and the query image only contains the target object. To effectively extract discriminative features and facilitate the training process, a learning-based method, referred to as Constraint Co-Attention Network (CCAN), is proposed which consists of a constraint co-attention module and a grasp affordance predictor. An effective co-attention module is presented to construct the features of a workspace image from the extracted features of the query image. By introducing soft constraints into the co-attention module, it highlights the target object’s features while trivializes other objects’ features in the workspace image. Using the features extracted from the co-attention module, the cascaded grasp affordance interpreter network only predicts the grasp configuration for the target object. The training of the CCAN is totally based on simulated self-supervision. Extensive qualitative and quantitative experiments show the effectiveness of our method both in simulated and real-world environments even for totally unseen objects.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"8 1\",\"pages\":\"8353-8359\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CCAN: Constraint Co-Attention Network for Instance Grasping
Instance grasping is a challenging robotic grasping task when a robot aims to grasp a specified target object in cluttered scenes. In this paper, we propose a novel end-to-end instance grasping method using only monocular workspace and query images, where the workspace image includes several objects and the query image only contains the target object. To effectively extract discriminative features and facilitate the training process, a learning-based method, referred to as Constraint Co-Attention Network (CCAN), is proposed which consists of a constraint co-attention module and a grasp affordance predictor. An effective co-attention module is presented to construct the features of a workspace image from the extracted features of the query image. By introducing soft constraints into the co-attention module, it highlights the target object’s features while trivializes other objects’ features in the workspace image. Using the features extracted from the co-attention module, the cascaded grasp affordance interpreter network only predicts the grasp configuration for the target object. The training of the CCAN is totally based on simulated self-supervision. Extensive qualitative and quantitative experiments show the effectiveness of our method both in simulated and real-world environments even for totally unseen objects.