一类对称函数的Schur凸性及其应用

Wei-Mao Qian, Y. Chu
{"title":"一类对称函数的Schur凸性及其应用","authors":"Wei-Mao Qian, Y. Chu","doi":"10.22436/JNSA.011.06.10","DOIUrl":null,"url":null,"abstract":"In the article, we prove that the symmetric function Fn (x1, x2, · · · , xn; r) = ∑ 16i1<i2<···<ir6n r ∏ j=1 ( 1 + xij 1 − xij )1/r is Schur convex, Schur multiplicatively convex and Schur harmonic convex on [0, 1)n, and establish several new analytic inequalities by use of the theory of majorization, where r ∈ {1, 2, · · · ,n} and i1, i2, · · · in are integers.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"12 1","pages":"841-849"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schur convexity properties for a class of symmetric functions with applications\",\"authors\":\"Wei-Mao Qian, Y. Chu\",\"doi\":\"10.22436/JNSA.011.06.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the article, we prove that the symmetric function Fn (x1, x2, · · · , xn; r) = ∑ 16i1<i2<···<ir6n r ∏ j=1 ( 1 + xij 1 − xij )1/r is Schur convex, Schur multiplicatively convex and Schur harmonic convex on [0, 1)n, and establish several new analytic inequalities by use of the theory of majorization, where r ∈ {1, 2, · · · ,n} and i1, i2, · · · in are integers.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"12 1\",\"pages\":\"841-849\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/JNSA.011.06.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.011.06.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了对称函数Fn (x1, x2,···,xn;r) =∑16i1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Schur convexity properties for a class of symmetric functions with applications
In the article, we prove that the symmetric function Fn (x1, x2, · · · , xn; r) = ∑ 16i1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信