广义rabinovitch - fabrikant系统:方程及其动力学

IF 0.5 Q4 PHYSICS, MULTIDISCIPLINARY
S. Kuznetsov, L. Turukina
{"title":"广义rabinovitch - fabrikant系统:方程及其动力学","authors":"S. Kuznetsov, L. Turukina","doi":"10.18500/0869-6632-2022-30-1-7-29","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to numerically study of the generalized Rabinovich–Fabrikant model. This model is obtained using the Lagrange formalism and describing the three-mode interaction in the presence of a general cubic nonlinearity. The model demonstrates very rich dynamics due to the presence of third-order nonlinearity in the equations. Methods. The study is based on the numerical solution of the obtained analytically differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For the generalized model we present a charts of dynamic regimes in the control parameter plane, Lyapunov exponents depending on parameters, portraits of attractors and their basins. On the plane of control parameters, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. It is shown that the dynamics of the generalized model depends on the signature of the characteristic expressions presented in the equations. A comparison with the dynamics of the Rabinovich– Fabrikant model is carried out. We indicated a region in the parameter plane in which there is a complete or partial coincidence of dynamics. Conclusion. The generalized model is new and describes the interaction of three modes, in the case when the cubic nonlinearity that determines their interaction is given in a general form. In addition, since the considered model is a certain natural extension of the well-known Rabinovich–Fabrikant model, then it is universal. And it can simulate systems of various physical nature (including radio engineering), in which there is a three-mode interaction and there is a general cubic nonlinearity.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Rabinovich–Fabrikant system: equations and its dynamics\",\"authors\":\"S. Kuznetsov, L. Turukina\",\"doi\":\"10.18500/0869-6632-2022-30-1-7-29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work is to numerically study of the generalized Rabinovich–Fabrikant model. This model is obtained using the Lagrange formalism and describing the three-mode interaction in the presence of a general cubic nonlinearity. The model demonstrates very rich dynamics due to the presence of third-order nonlinearity in the equations. Methods. The study is based on the numerical solution of the obtained analytically differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For the generalized model we present a charts of dynamic regimes in the control parameter plane, Lyapunov exponents depending on parameters, portraits of attractors and their basins. On the plane of control parameters, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. It is shown that the dynamics of the generalized model depends on the signature of the characteristic expressions presented in the equations. A comparison with the dynamics of the Rabinovich– Fabrikant model is carried out. We indicated a region in the parameter plane in which there is a complete or partial coincidence of dynamics. Conclusion. The generalized model is new and describes the interaction of three modes, in the case when the cubic nonlinearity that determines their interaction is given in a general form. In addition, since the considered model is a certain natural extension of the well-known Rabinovich–Fabrikant model, then it is universal. And it can simulate systems of various physical nature (including radio engineering), in which there is a three-mode interaction and there is a general cubic nonlinearity.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-2022-30-1-7-29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-1-7-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是对广义rabinovitch - fabrikant模型进行数值研究。该模型描述了一般三次非线性存在下的三模相互作用。由于方程中存在三阶非线性,该模型表现出非常丰富的动力学特性。方法。本研究的基础是对得到的解析微分方程进行数值解,并利用mtcont程序对其进行数值分岔分析。结果。对于广义模型,我们给出了控制参数平面上的动态状态图、依赖于参数的Lyapunov指数、吸引子及其盆地的画像。在控制参数平面上,数值求出了分岔线和分岔点。它们被绘制为平衡点,周期为一个极限环。结果表明,广义模型的动力学取决于方程中特征表达式的特征。并与Rabinovich - Fabrikant模型的动力学进行了比较。我们在参数平面上指出了一个区域,在这个区域内动力学完全或部分重合。结论。广义模型是一种新的模型,它描述了三种模态的相互作用,而决定它们相互作用的三次非线性以一般形式给出。此外,由于所考虑的模型是众所周知的rabinovitch - fabrikant模型的某种自然推广,因此它具有普适性。它可以模拟各种物理性质的系统(包括无线电工程),其中存在三模相互作用和一般的三次非线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Rabinovich–Fabrikant system: equations and its dynamics
The purpose of this work is to numerically study of the generalized Rabinovich–Fabrikant model. This model is obtained using the Lagrange formalism and describing the three-mode interaction in the presence of a general cubic nonlinearity. The model demonstrates very rich dynamics due to the presence of third-order nonlinearity in the equations. Methods. The study is based on the numerical solution of the obtained analytically differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For the generalized model we present a charts of dynamic regimes in the control parameter plane, Lyapunov exponents depending on parameters, portraits of attractors and their basins. On the plane of control parameters, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. It is shown that the dynamics of the generalized model depends on the signature of the characteristic expressions presented in the equations. A comparison with the dynamics of the Rabinovich– Fabrikant model is carried out. We indicated a region in the parameter plane in which there is a complete or partial coincidence of dynamics. Conclusion. The generalized model is new and describes the interaction of three modes, in the case when the cubic nonlinearity that determines their interaction is given in a general form. In addition, since the considered model is a certain natural extension of the well-known Rabinovich–Fabrikant model, then it is universal. And it can simulate systems of various physical nature (including radio engineering), in which there is a three-mode interaction and there is a general cubic nonlinearity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信