{"title":"广义rabinovitch - fabrikant系统:方程及其动力学","authors":"S. Kuznetsov, L. Turukina","doi":"10.18500/0869-6632-2022-30-1-7-29","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to numerically study of the generalized Rabinovich–Fabrikant model. This model is obtained using the Lagrange formalism and describing the three-mode interaction in the presence of a general cubic nonlinearity. The model demonstrates very rich dynamics due to the presence of third-order nonlinearity in the equations. Methods. The study is based on the numerical solution of the obtained analytically differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For the generalized model we present a charts of dynamic regimes in the control parameter plane, Lyapunov exponents depending on parameters, portraits of attractors and their basins. On the plane of control parameters, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. It is shown that the dynamics of the generalized model depends on the signature of the characteristic expressions presented in the equations. A comparison with the dynamics of the Rabinovich– Fabrikant model is carried out. We indicated a region in the parameter plane in which there is a complete or partial coincidence of dynamics. Conclusion. The generalized model is new and describes the interaction of three modes, in the case when the cubic nonlinearity that determines their interaction is given in a general form. In addition, since the considered model is a certain natural extension of the well-known Rabinovich–Fabrikant model, then it is universal. And it can simulate systems of various physical nature (including radio engineering), in which there is a three-mode interaction and there is a general cubic nonlinearity.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"4 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Rabinovich–Fabrikant system: equations and its dynamics\",\"authors\":\"S. Kuznetsov, L. Turukina\",\"doi\":\"10.18500/0869-6632-2022-30-1-7-29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work is to numerically study of the generalized Rabinovich–Fabrikant model. This model is obtained using the Lagrange formalism and describing the three-mode interaction in the presence of a general cubic nonlinearity. The model demonstrates very rich dynamics due to the presence of third-order nonlinearity in the equations. Methods. The study is based on the numerical solution of the obtained analytically differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For the generalized model we present a charts of dynamic regimes in the control parameter plane, Lyapunov exponents depending on parameters, portraits of attractors and their basins. On the plane of control parameters, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. It is shown that the dynamics of the generalized model depends on the signature of the characteristic expressions presented in the equations. A comparison with the dynamics of the Rabinovich– Fabrikant model is carried out. We indicated a region in the parameter plane in which there is a complete or partial coincidence of dynamics. Conclusion. The generalized model is new and describes the interaction of three modes, in the case when the cubic nonlinearity that determines their interaction is given in a general form. In addition, since the considered model is a certain natural extension of the well-known Rabinovich–Fabrikant model, then it is universal. And it can simulate systems of various physical nature (including radio engineering), in which there is a three-mode interaction and there is a general cubic nonlinearity.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-2022-30-1-7-29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-1-7-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Generalized Rabinovich–Fabrikant system: equations and its dynamics
The purpose of this work is to numerically study of the generalized Rabinovich–Fabrikant model. This model is obtained using the Lagrange formalism and describing the three-mode interaction in the presence of a general cubic nonlinearity. The model demonstrates very rich dynamics due to the presence of third-order nonlinearity in the equations. Methods. The study is based on the numerical solution of the obtained analytically differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For the generalized model we present a charts of dynamic regimes in the control parameter plane, Lyapunov exponents depending on parameters, portraits of attractors and their basins. On the plane of control parameters, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. It is shown that the dynamics of the generalized model depends on the signature of the characteristic expressions presented in the equations. A comparison with the dynamics of the Rabinovich– Fabrikant model is carried out. We indicated a region in the parameter plane in which there is a complete or partial coincidence of dynamics. Conclusion. The generalized model is new and describes the interaction of three modes, in the case when the cubic nonlinearity that determines their interaction is given in a general form. In addition, since the considered model is a certain natural extension of the well-known Rabinovich–Fabrikant model, then it is universal. And it can simulate systems of various physical nature (including radio engineering), in which there is a three-mode interaction and there is a general cubic nonlinearity.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.