细胞分裂和受电弓方程

B. Brunt, A. Zaidi, T. Lynch
{"title":"细胞分裂和受电弓方程","authors":"B. Brunt, A. Zaidi, T. Lynch","doi":"10.1051/PROC/201862158","DOIUrl":null,"url":null,"abstract":"Simple models for size structured cell populations undergoing growth and division produce a class of functional ordinary differential equations, called pantograph equations, that describe the long time asymptotics of the cell number density. Pantograph equations arise in a number of applications outside this model and, as a result, have been studied heavily over the last five decades. In this paper we review and survey the role of the pantograph equation in the context of cell division. In addition, for a simple case we present a method of solution based on the Mellin transform and establish uniqueness directly from the transform equation.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"15 1","pages":"158-167"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cell Division And The Pantograph Equation\",\"authors\":\"B. Brunt, A. Zaidi, T. Lynch\",\"doi\":\"10.1051/PROC/201862158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple models for size structured cell populations undergoing growth and division produce a class of functional ordinary differential equations, called pantograph equations, that describe the long time asymptotics of the cell number density. Pantograph equations arise in a number of applications outside this model and, as a result, have been studied heavily over the last five decades. In this paper we review and survey the role of the pantograph equation in the context of cell division. In addition, for a simple case we present a method of solution based on the Mellin transform and establish uniqueness directly from the transform equation.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"15 1\",\"pages\":\"158-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/PROC/201862158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/PROC/201862158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在生长和分裂过程中,大小结构细胞群体的简单模型产生了一类称为受电弓方程的泛函常微分方程,它描述了细胞数量密度的长时间渐近性。受电弓方程出现在这个模型之外的许多应用中,因此,在过去的50年里,人们对其进行了大量的研究。本文综述了受电弓方程在细胞分裂过程中的作用。此外,对于一个简单的例子,我们提出了一种基于Mellin变换的求解方法,并直接从变换方程中建立唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell Division And The Pantograph Equation
Simple models for size structured cell populations undergoing growth and division produce a class of functional ordinary differential equations, called pantograph equations, that describe the long time asymptotics of the cell number density. Pantograph equations arise in a number of applications outside this model and, as a result, have been studied heavily over the last five decades. In this paper we review and survey the role of the pantograph equation in the context of cell division. In addition, for a simple case we present a method of solution based on the Mellin transform and establish uniqueness directly from the transform equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信