{"title":"工作记忆容量:尖峰神经网络模型参数的作用","authors":"Natalya Kovaleva, Valerij Matrosov, M. Mishchenko","doi":"10.18500/0869-6632-003022","DOIUrl":null,"url":null,"abstract":"Purpose of this work is to study a computational model of working memory formation based on spiking neural network with plastic connections and to study the capacity of working memory depending on the time scales of synaptic facilitation and depression and the background excitation of the network. Methods. The model imitates working memory formation within synaptic theory: memorized items are stored in form of short-term potentiated connections in selective population but not in form of persistent activity. Integrate-And-Fire neuron model in excitable mode are used as network elements. Connections between excitatory neurons demonstrates the effect of short-term plasticity. Results. It is shown that the working memory capacity increases as calcium recovery time parameter grow up or the capacity increases with neurotransmitter recovery time parameter becomes lower. Working memory capacity is found to decrease to zero with decrease of the background excitation as a result of lower values of both the mean and the variance of the external noise. Conclusion. Working memory capacity was studied as a function of time scales of synaptic facilitation and depression and background excitation of the network. Estimated working memory capacity is shown to be possibly larger than classical experimental estimations of four items. But capacity strongly depends on intrinsic parameters of neural networks","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"79 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Working memory capacity: the role of parameters of spiking neural network model\",\"authors\":\"Natalya Kovaleva, Valerij Matrosov, M. Mishchenko\",\"doi\":\"10.18500/0869-6632-003022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose of this work is to study a computational model of working memory formation based on spiking neural network with plastic connections and to study the capacity of working memory depending on the time scales of synaptic facilitation and depression and the background excitation of the network. Methods. The model imitates working memory formation within synaptic theory: memorized items are stored in form of short-term potentiated connections in selective population but not in form of persistent activity. Integrate-And-Fire neuron model in excitable mode are used as network elements. Connections between excitatory neurons demonstrates the effect of short-term plasticity. Results. It is shown that the working memory capacity increases as calcium recovery time parameter grow up or the capacity increases with neurotransmitter recovery time parameter becomes lower. Working memory capacity is found to decrease to zero with decrease of the background excitation as a result of lower values of both the mean and the variance of the external noise. Conclusion. Working memory capacity was studied as a function of time scales of synaptic facilitation and depression and background excitation of the network. Estimated working memory capacity is shown to be possibly larger than classical experimental estimations of four items. But capacity strongly depends on intrinsic parameters of neural networks\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Working memory capacity: the role of parameters of spiking neural network model
Purpose of this work is to study a computational model of working memory formation based on spiking neural network with plastic connections and to study the capacity of working memory depending on the time scales of synaptic facilitation and depression and the background excitation of the network. Methods. The model imitates working memory formation within synaptic theory: memorized items are stored in form of short-term potentiated connections in selective population but not in form of persistent activity. Integrate-And-Fire neuron model in excitable mode are used as network elements. Connections between excitatory neurons demonstrates the effect of short-term plasticity. Results. It is shown that the working memory capacity increases as calcium recovery time parameter grow up or the capacity increases with neurotransmitter recovery time parameter becomes lower. Working memory capacity is found to decrease to zero with decrease of the background excitation as a result of lower values of both the mean and the variance of the external noise. Conclusion. Working memory capacity was studied as a function of time scales of synaptic facilitation and depression and background excitation of the network. Estimated working memory capacity is shown to be possibly larger than classical experimental estimations of four items. But capacity strongly depends on intrinsic parameters of neural networks
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.