Xiaotian Huang, Jun Zhang, C. Xie, Yunfeng Zhou, H. Quan
{"title":"方差成分分析(ANOVA)在肺癌立体定向放射治疗(SBRT)的设置误差和PTV边缘中的应用","authors":"Xiaotian Huang, Jun Zhang, C. Xie, Yunfeng Zhou, H. Quan","doi":"10.4236/IJMPCERO.2018.74044","DOIUrl":null,"url":null,"abstract":"Purpose: To investigate the feasibility of applying ANOVA newly proposed by Yukinori to verify the setup errors, PTV (Planning Target Volume) margins, DVH for lung cancer with SBRT. Methods: 20 patients receiving SBRT to 50 Gy in 5 fractions with a Varian iX linear acceleration were selected. Each patient was scanned with kV-CBCT before the daily treatment to verify the setup position. Two other error calculation methods raised by Van Herk and Remeijer were also compared to discover the statistical difference in systematic errors (Σ), random errors (σ), PTV margins and DVH. Results: Utilizing two PTV margin calculation formulas (Stroom, Van Herk), PTV calculated by Yukinori method in three directions were (5.89 and 3.95), (5.54 and 3.55), (3.24 and 0.78) mm; Van Herk method were (6.10 and 4.25), (5.73 and 3.83), (3.51 and 1.13) mm; Remeijer method were (6.39 and 4.57), (5.98 and 4.10), (3.69 and 1.33) mm. The volumes of PTV using Yukinori method were significantly smaller (P 0.05) among three methods. Conclusions: In lung SBRT treatment, due to fraction reduction and high level of dose per fraction, ANOVA was able to offset the effect of random factors in systematic errors, reducing the PTV margins and volumes. However, no distinct dose distribution improvement was founded in target volume and organs at risk.","PeriodicalId":14028,"journal":{"name":"International Journal of Medical Physics, Clinical Engineering and Radiation Oncology","volume":"2 1","pages":"522-538"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Variance Component Analysis (ANOVA) in Setup Errors and PTV Margins for Lung Cancer with Stereotactic Body Radiation Therapy (SBRT)\",\"authors\":\"Xiaotian Huang, Jun Zhang, C. Xie, Yunfeng Zhou, H. Quan\",\"doi\":\"10.4236/IJMPCERO.2018.74044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: To investigate the feasibility of applying ANOVA newly proposed by Yukinori to verify the setup errors, PTV (Planning Target Volume) margins, DVH for lung cancer with SBRT. Methods: 20 patients receiving SBRT to 50 Gy in 5 fractions with a Varian iX linear acceleration were selected. Each patient was scanned with kV-CBCT before the daily treatment to verify the setup position. Two other error calculation methods raised by Van Herk and Remeijer were also compared to discover the statistical difference in systematic errors (Σ), random errors (σ), PTV margins and DVH. Results: Utilizing two PTV margin calculation formulas (Stroom, Van Herk), PTV calculated by Yukinori method in three directions were (5.89 and 3.95), (5.54 and 3.55), (3.24 and 0.78) mm; Van Herk method were (6.10 and 4.25), (5.73 and 3.83), (3.51 and 1.13) mm; Remeijer method were (6.39 and 4.57), (5.98 and 4.10), (3.69 and 1.33) mm. The volumes of PTV using Yukinori method were significantly smaller (P 0.05) among three methods. Conclusions: In lung SBRT treatment, due to fraction reduction and high level of dose per fraction, ANOVA was able to offset the effect of random factors in systematic errors, reducing the PTV margins and volumes. However, no distinct dose distribution improvement was founded in target volume and organs at risk.\",\"PeriodicalId\":14028,\"journal\":{\"name\":\"International Journal of Medical Physics, Clinical Engineering and Radiation Oncology\",\"volume\":\"2 1\",\"pages\":\"522-538\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Physics, Clinical Engineering and Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMPCERO.2018.74044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Physics, Clinical Engineering and Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/IJMPCERO.2018.74044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Variance Component Analysis (ANOVA) in Setup Errors and PTV Margins for Lung Cancer with Stereotactic Body Radiation Therapy (SBRT)
Purpose: To investigate the feasibility of applying ANOVA newly proposed by Yukinori to verify the setup errors, PTV (Planning Target Volume) margins, DVH for lung cancer with SBRT. Methods: 20 patients receiving SBRT to 50 Gy in 5 fractions with a Varian iX linear acceleration were selected. Each patient was scanned with kV-CBCT before the daily treatment to verify the setup position. Two other error calculation methods raised by Van Herk and Remeijer were also compared to discover the statistical difference in systematic errors (Σ), random errors (σ), PTV margins and DVH. Results: Utilizing two PTV margin calculation formulas (Stroom, Van Herk), PTV calculated by Yukinori method in three directions were (5.89 and 3.95), (5.54 and 3.55), (3.24 and 0.78) mm; Van Herk method were (6.10 and 4.25), (5.73 and 3.83), (3.51 and 1.13) mm; Remeijer method were (6.39 and 4.57), (5.98 and 4.10), (3.69 and 1.33) mm. The volumes of PTV using Yukinori method were significantly smaller (P 0.05) among three methods. Conclusions: In lung SBRT treatment, due to fraction reduction and high level of dose per fraction, ANOVA was able to offset the effect of random factors in systematic errors, reducing the PTV margins and volumes. However, no distinct dose distribution improvement was founded in target volume and organs at risk.