N. Gupta, H. Shrimali, A. Makosiej, A. Vladimirescu, A. Amara
{"title":"高能效无比较器电流模式TFET-CMOS协集成可扩展闪存ADC","authors":"N. Gupta, H. Shrimali, A. Makosiej, A. Vladimirescu, A. Amara","doi":"10.1109/MWSCAS47672.2021.9531911","DOIUrl":null,"url":null,"abstract":"This paper presents a novel TFET-CMOS co-integrated comparator-less, energy-efficient ADC architecture. The design utilizes the Negative Differential Resistance property of TFETs to generate thermometer code without using comparators. The design supports Dynamic Voltage Frequency Scaling. Binary-weighted TFET device sizing is used to generate thermometer code. TFETs used in this work are compatible with a 28nm FDSOI-CMOS process for fabrication. The most relevant performance numbers for 3- to 10-bit ADC architectures include speed of operation of 68 MHz with an ENOB evaluated greater than 2.38 for the 3-bit ADC; the FOM is in the range of 0.07 to 1.3 fJ/conversion for 3- to 10-bit designs with supply voltages from 0.4V to 1.2V, respectively. The proposed 5- and 6-bit designs show 46x [1] and 265x [2] improvement in FOM, respectively.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"57 1","pages":"297-300"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy Efficient Comparator-Less Current-Mode TFET-CMOS Co-Integrated Scalable Flash ADC\",\"authors\":\"N. Gupta, H. Shrimali, A. Makosiej, A. Vladimirescu, A. Amara\",\"doi\":\"10.1109/MWSCAS47672.2021.9531911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel TFET-CMOS co-integrated comparator-less, energy-efficient ADC architecture. The design utilizes the Negative Differential Resistance property of TFETs to generate thermometer code without using comparators. The design supports Dynamic Voltage Frequency Scaling. Binary-weighted TFET device sizing is used to generate thermometer code. TFETs used in this work are compatible with a 28nm FDSOI-CMOS process for fabrication. The most relevant performance numbers for 3- to 10-bit ADC architectures include speed of operation of 68 MHz with an ENOB evaluated greater than 2.38 for the 3-bit ADC; the FOM is in the range of 0.07 to 1.3 fJ/conversion for 3- to 10-bit designs with supply voltages from 0.4V to 1.2V, respectively. The proposed 5- and 6-bit designs show 46x [1] and 265x [2] improvement in FOM, respectively.\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"57 1\",\"pages\":\"297-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy Efficient Comparator-Less Current-Mode TFET-CMOS Co-Integrated Scalable Flash ADC
This paper presents a novel TFET-CMOS co-integrated comparator-less, energy-efficient ADC architecture. The design utilizes the Negative Differential Resistance property of TFETs to generate thermometer code without using comparators. The design supports Dynamic Voltage Frequency Scaling. Binary-weighted TFET device sizing is used to generate thermometer code. TFETs used in this work are compatible with a 28nm FDSOI-CMOS process for fabrication. The most relevant performance numbers for 3- to 10-bit ADC architectures include speed of operation of 68 MHz with an ENOB evaluated greater than 2.38 for the 3-bit ADC; the FOM is in the range of 0.07 to 1.3 fJ/conversion for 3- to 10-bit designs with supply voltages from 0.4V to 1.2V, respectively. The proposed 5- and 6-bit designs show 46x [1] and 265x [2] improvement in FOM, respectively.