向列液晶惯性钱生模型的熵不等式和能量耗散

Ning Jiang, Yi-Long Luo, Yangjun Ma, Shaojun Tang
{"title":"向列液晶惯性钱生模型的熵不等式和能量耗散","authors":"Ning Jiang, Yi-Long Luo, Yangjun Ma, Shaojun Tang","doi":"10.1142/S0219891621500065","DOIUrl":null,"url":null,"abstract":"For the inertial Qian-Sheng model of nematic liquid crystals in the $Q$-tensor framework, we illustrate the roles played by the entropy inequality and energy dissipation in the well-posedness of smooth solutions when we employ energy method. We first derive the coefficients requirements from the entropy inequality, and point out the entropy inequality is insufficient to guarantee energy dissipation. We then introduce a novel Condition (H) which ensures the energy dissipation. We prove that when both the entropy inequality and Condition (H) are obeyed, the local in time smooth solutions exist for large initial data. Otherwise, we can only obtain small data local solutions. Furthermore, to extend the solutions globally in time and obtain the decay of solutions, we require at least one of the two conditions: entropy inequality, or $\\tilde{\\mu}_2= \\mu_2$, which significantly enlarge the range of the coefficients in previous works.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Entropy inequality and energy dissipation of inertial Qian–Sheng model for nematic liquid crystals\",\"authors\":\"Ning Jiang, Yi-Long Luo, Yangjun Ma, Shaojun Tang\",\"doi\":\"10.1142/S0219891621500065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the inertial Qian-Sheng model of nematic liquid crystals in the $Q$-tensor framework, we illustrate the roles played by the entropy inequality and energy dissipation in the well-posedness of smooth solutions when we employ energy method. We first derive the coefficients requirements from the entropy inequality, and point out the entropy inequality is insufficient to guarantee energy dissipation. We then introduce a novel Condition (H) which ensures the energy dissipation. We prove that when both the entropy inequality and Condition (H) are obeyed, the local in time smooth solutions exist for large initial data. Otherwise, we can only obtain small data local solutions. Furthermore, to extend the solutions globally in time and obtain the decay of solutions, we require at least one of the two conditions: entropy inequality, or $\\\\tilde{\\\\mu}_2= \\\\mu_2$, which significantly enlarge the range of the coefficients in previous works.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219891621500065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219891621500065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于$Q$ -张量框架下的向列液晶惯性钱生模型,我们说明了当我们采用能量法时,熵不等式和能量耗散在光滑解的适定性中所起的作用。首先由熵不等式推导出系数要求,并指出熵不等式不足以保证能量耗散。然后,我们引入了一个保证能量耗散的新条件(H)。证明了当熵不等式和条件(H)同时满足时,对于大初始数据存在局部时间光滑解。否则,我们只能得到小数据的局部解。此外,为了在时间上全局扩展解并得到解的衰减,我们至少需要两个条件中的一个:熵不等式,或$\tilde{\mu}_2= \mu_2$,这大大扩大了先前工作中系数的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy inequality and energy dissipation of inertial Qian–Sheng model for nematic liquid crystals
For the inertial Qian-Sheng model of nematic liquid crystals in the $Q$-tensor framework, we illustrate the roles played by the entropy inequality and energy dissipation in the well-posedness of smooth solutions when we employ energy method. We first derive the coefficients requirements from the entropy inequality, and point out the entropy inequality is insufficient to guarantee energy dissipation. We then introduce a novel Condition (H) which ensures the energy dissipation. We prove that when both the entropy inequality and Condition (H) are obeyed, the local in time smooth solutions exist for large initial data. Otherwise, we can only obtain small data local solutions. Furthermore, to extend the solutions globally in time and obtain the decay of solutions, we require at least one of the two conditions: entropy inequality, or $\tilde{\mu}_2= \mu_2$, which significantly enlarge the range of the coefficients in previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信