武装边缘:设计边缘计算能力的机器学习算法,以目标ARM多普勒激光雷达处理

R. Jackson, B. Raut, Dario Dematties, S. Collis, Nicola, Ferrier, P. Beckman, Raman Sankaran, Yongho Kim, Seongha Park, Sean Shahkarami, R. Newsom
{"title":"武装边缘:设计边缘计算能力的机器学习算法,以目标ARM多普勒激光雷达处理","authors":"R. Jackson, B. Raut, Dario Dematties, S. Collis, Nicola, Ferrier, P. Beckman, Raman Sankaran, Yongho Kim, Seongha Park, Sean Shahkarami, R. Newsom","doi":"10.1175/aies-d-22-0062.1","DOIUrl":null,"url":null,"abstract":"\nThere is a need for long term observations of cloud and precipitation fall speeds for validating and improving rainfall forecasts from climate models. To this end, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) User Facility Southern Great Plains (SGP) site at Lamont, OK hosts five ARM Doppler lidars that can measure cloud and aerosol properties. In particular, the ARM Doppler lidars record Doppler spectra that contain information about the fall speeds of cloud and precipitation particles. However, due to bandwidth and storage constraints, the Doppler spectra are not routinely stored. This calls for the automation of cloud and rain detection in ARM Doppler lidar data so that the spectral data in clouds can be selectively saved and further analyzed. During the ARMing the Edge field experiment, a Waggle node capable of performing machine learning applications in situ was deployed at ARM’s SGP site for this purpose. In this paper, we develop and test four algorithms for the Waggle node to automatically classify ARM Doppler lidar data. We demonstrate that supervised learning using a ResNet50-based classifier will classify 97.6% of the clear air and 94.7% of cloudy images correctly, outperforming traditional peak detection methods. We also show that a convolutional autoencoder paired with k- means clustering identifies ten clusters in the ARM Doppler lidar data. Three clusters correspond to mostly clear conditions with scattered high clouds, and seven others correspond to cloudy conditions with varying cloud base heights.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"126 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARMing the Edge: Designing Edge Computing-capable Machine Learning Algorithms to Target ARM Doppler Lidar Processing\",\"authors\":\"R. Jackson, B. Raut, Dario Dematties, S. Collis, Nicola, Ferrier, P. Beckman, Raman Sankaran, Yongho Kim, Seongha Park, Sean Shahkarami, R. Newsom\",\"doi\":\"10.1175/aies-d-22-0062.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThere is a need for long term observations of cloud and precipitation fall speeds for validating and improving rainfall forecasts from climate models. To this end, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) User Facility Southern Great Plains (SGP) site at Lamont, OK hosts five ARM Doppler lidars that can measure cloud and aerosol properties. In particular, the ARM Doppler lidars record Doppler spectra that contain information about the fall speeds of cloud and precipitation particles. However, due to bandwidth and storage constraints, the Doppler spectra are not routinely stored. This calls for the automation of cloud and rain detection in ARM Doppler lidar data so that the spectral data in clouds can be selectively saved and further analyzed. During the ARMing the Edge field experiment, a Waggle node capable of performing machine learning applications in situ was deployed at ARM’s SGP site for this purpose. In this paper, we develop and test four algorithms for the Waggle node to automatically classify ARM Doppler lidar data. We demonstrate that supervised learning using a ResNet50-based classifier will classify 97.6% of the clear air and 94.7% of cloudy images correctly, outperforming traditional peak detection methods. We also show that a convolutional autoencoder paired with k- means clustering identifies ten clusters in the ARM Doppler lidar data. Three clusters correspond to mostly clear conditions with scattered high clouds, and seven others correspond to cloudy conditions with varying cloud base heights.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0062.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0062.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了验证和改进气候模式的降雨预报,需要对云和降水下降速度进行长期观测。为此,美国能源部位于拉蒙特的大气辐射测量(ARM)南部大平原用户设施(SGP)站点拥有五台ARM多普勒激光雷达,可以测量云和气溶胶特性。特别是,ARM多普勒激光雷达记录的多普勒光谱包含有关云和降水粒子下降速度的信息。然而,由于带宽和存储的限制,多普勒光谱不能常规存储。这就需要在ARM多普勒激光雷达数据中实现云和雨探测的自动化,以便有选择地保存和进一步分析云中的光谱数据。在“武装边缘”现场实验期间,为了实现这一目的,ARM在SGP现场部署了一个能够执行机器学习应用程序的Waggle节点。在本文中,我们开发并测试了四种基于Waggle节点的ARM多普勒激光雷达数据自动分类算法。我们证明,使用基于resnet50的分类器的监督学习将正确分类97.6%的晴空图像和94.7%的浑浊图像,优于传统的峰值检测方法。我们还表明,与k均值聚类配对的卷积自编码器可以识别ARM多普勒激光雷达数据中的十个聚类。其中3个星团对应的是大部分天气晴朗,高空云零星分布的情况,另外7个星团对应的是云底高度变化的多云情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARMing the Edge: Designing Edge Computing-capable Machine Learning Algorithms to Target ARM Doppler Lidar Processing
There is a need for long term observations of cloud and precipitation fall speeds for validating and improving rainfall forecasts from climate models. To this end, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) User Facility Southern Great Plains (SGP) site at Lamont, OK hosts five ARM Doppler lidars that can measure cloud and aerosol properties. In particular, the ARM Doppler lidars record Doppler spectra that contain information about the fall speeds of cloud and precipitation particles. However, due to bandwidth and storage constraints, the Doppler spectra are not routinely stored. This calls for the automation of cloud and rain detection in ARM Doppler lidar data so that the spectral data in clouds can be selectively saved and further analyzed. During the ARMing the Edge field experiment, a Waggle node capable of performing machine learning applications in situ was deployed at ARM’s SGP site for this purpose. In this paper, we develop and test four algorithms for the Waggle node to automatically classify ARM Doppler lidar data. We demonstrate that supervised learning using a ResNet50-based classifier will classify 97.6% of the clear air and 94.7% of cloudy images correctly, outperforming traditional peak detection methods. We also show that a convolutional autoencoder paired with k- means clustering identifies ten clusters in the ARM Doppler lidar data. Three clusters correspond to mostly clear conditions with scattered high clouds, and seven others correspond to cloudy conditions with varying cloud base heights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信