Weihong Ren, Jiandong Tian, Zhi Han, Antoni B. Chan, Yandong Tang
{"title":"基于矩阵分解的视频去噪与去噪","authors":"Weihong Ren, Jiandong Tian, Zhi Han, Antoni B. Chan, Yandong Tang","doi":"10.1109/CVPR.2017.303","DOIUrl":null,"url":null,"abstract":"The existing snow/rain removal methods often fail for heavy snow/rain and dynamic scene. One reason for the failure is due to the assumption that all the snowflakes/rain streaks are sparse in snow/rain scenes. The other is that the existing methods often can not differentiate moving objects and snowflakes/rain streaks. In this paper, we propose a model based on matrix decomposition for video desnowing and deraining to solve the problems mentioned above. We divide snowflakes/rain streaks into two categories: sparse ones and dense ones. With background fluctuations and optical flow information, the detection of moving objects and sparse snowflakes/rain streaks is formulated as a multi-label Markov Random Fields (MRFs). As for dense snowflakes/rain streaks, they are considered to obey Gaussian distribution. The snowflakes/rain streaks, including sparse ones and dense ones, in scene backgrounds are removed by low-rank representation of the backgrounds. Meanwhile, a group sparsity term in our model is designed to filter snow/rain pixels within the moving objects. Experimental results show that our proposed model performs better than the state-of-the-art methods for snow and rain removal.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"19 1","pages":"2838-2847"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"Video Desnowing and Deraining Based on Matrix Decomposition\",\"authors\":\"Weihong Ren, Jiandong Tian, Zhi Han, Antoni B. Chan, Yandong Tang\",\"doi\":\"10.1109/CVPR.2017.303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing snow/rain removal methods often fail for heavy snow/rain and dynamic scene. One reason for the failure is due to the assumption that all the snowflakes/rain streaks are sparse in snow/rain scenes. The other is that the existing methods often can not differentiate moving objects and snowflakes/rain streaks. In this paper, we propose a model based on matrix decomposition for video desnowing and deraining to solve the problems mentioned above. We divide snowflakes/rain streaks into two categories: sparse ones and dense ones. With background fluctuations and optical flow information, the detection of moving objects and sparse snowflakes/rain streaks is formulated as a multi-label Markov Random Fields (MRFs). As for dense snowflakes/rain streaks, they are considered to obey Gaussian distribution. The snowflakes/rain streaks, including sparse ones and dense ones, in scene backgrounds are removed by low-rank representation of the backgrounds. Meanwhile, a group sparsity term in our model is designed to filter snow/rain pixels within the moving objects. Experimental results show that our proposed model performs better than the state-of-the-art methods for snow and rain removal.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"19 1\",\"pages\":\"2838-2847\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video Desnowing and Deraining Based on Matrix Decomposition
The existing snow/rain removal methods often fail for heavy snow/rain and dynamic scene. One reason for the failure is due to the assumption that all the snowflakes/rain streaks are sparse in snow/rain scenes. The other is that the existing methods often can not differentiate moving objects and snowflakes/rain streaks. In this paper, we propose a model based on matrix decomposition for video desnowing and deraining to solve the problems mentioned above. We divide snowflakes/rain streaks into two categories: sparse ones and dense ones. With background fluctuations and optical flow information, the detection of moving objects and sparse snowflakes/rain streaks is formulated as a multi-label Markov Random Fields (MRFs). As for dense snowflakes/rain streaks, they are considered to obey Gaussian distribution. The snowflakes/rain streaks, including sparse ones and dense ones, in scene backgrounds are removed by low-rank representation of the backgrounds. Meanwhile, a group sparsity term in our model is designed to filter snow/rain pixels within the moving objects. Experimental results show that our proposed model performs better than the state-of-the-art methods for snow and rain removal.