Elham Sameiyan, Elnaz Bagheri, Shahrzad Dehghani, M. Ramezani, M. Alibolandi, K. Abnous, S. M. Taghdisi
{"title":"基于适配体的atp反应传递系统用于癌症的诊断和治疗","authors":"Elham Sameiyan, Elnaz Bagheri, Shahrzad Dehghani, M. Ramezani, M. Alibolandi, K. Abnous, S. M. Taghdisi","doi":"10.2139/ssrn.3687916","DOIUrl":null,"url":null,"abstract":"In recent years, many stimuli-triggered drug delivery platforms have been designed to deliver drugs accurately to specific sites and reduce their side effects, improving “on-demand” therapeutic efficacy. Adenosine-5'-triphosphate (ATP)-responsive drug delivery methods are examples of these systems that use ATP molecules as a trigger for delivery of therapeutic agents. Since intra- and extra-cellular ATP concentrations are significantly different from each other (1-10 mM and <0.4 mM, respectively), the use of ATP can be a practical method for regulating drug release. Aptamers possess unique properties including, ligand-specific response, short sequence (~ 20-80 bases) and easy functionalization. Thus, their combination with ATP-responsive systems results in more accurate drug delivery systems and greater control of drug release. A wide range of nanoparticle frameworks, such as polymeric nanogels, liposomes, metallic nanoparticles, protein, or DNA nano-assemblies, have been employed in the fabrication of nanocarriers. In this review, we describe several ATP-responsive drug delivery systems based on the various carriers and discuss the challenges and strengths of each method.","PeriodicalId":8928,"journal":{"name":"Biomaterials eJournal","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aptamer-Based Atp-Responsive Delivery Systems for Diagnosis and Treatment of Cancer\",\"authors\":\"Elham Sameiyan, Elnaz Bagheri, Shahrzad Dehghani, M. Ramezani, M. Alibolandi, K. Abnous, S. M. Taghdisi\",\"doi\":\"10.2139/ssrn.3687916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, many stimuli-triggered drug delivery platforms have been designed to deliver drugs accurately to specific sites and reduce their side effects, improving “on-demand” therapeutic efficacy. Adenosine-5'-triphosphate (ATP)-responsive drug delivery methods are examples of these systems that use ATP molecules as a trigger for delivery of therapeutic agents. Since intra- and extra-cellular ATP concentrations are significantly different from each other (1-10 mM and <0.4 mM, respectively), the use of ATP can be a practical method for regulating drug release. Aptamers possess unique properties including, ligand-specific response, short sequence (~ 20-80 bases) and easy functionalization. Thus, their combination with ATP-responsive systems results in more accurate drug delivery systems and greater control of drug release. A wide range of nanoparticle frameworks, such as polymeric nanogels, liposomes, metallic nanoparticles, protein, or DNA nano-assemblies, have been employed in the fabrication of nanocarriers. In this review, we describe several ATP-responsive drug delivery systems based on the various carriers and discuss the challenges and strengths of each method.\",\"PeriodicalId\":8928,\"journal\":{\"name\":\"Biomaterials eJournal\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3687916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3687916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aptamer-Based Atp-Responsive Delivery Systems for Diagnosis and Treatment of Cancer
In recent years, many stimuli-triggered drug delivery platforms have been designed to deliver drugs accurately to specific sites and reduce their side effects, improving “on-demand” therapeutic efficacy. Adenosine-5'-triphosphate (ATP)-responsive drug delivery methods are examples of these systems that use ATP molecules as a trigger for delivery of therapeutic agents. Since intra- and extra-cellular ATP concentrations are significantly different from each other (1-10 mM and <0.4 mM, respectively), the use of ATP can be a practical method for regulating drug release. Aptamers possess unique properties including, ligand-specific response, short sequence (~ 20-80 bases) and easy functionalization. Thus, their combination with ATP-responsive systems results in more accurate drug delivery systems and greater control of drug release. A wide range of nanoparticle frameworks, such as polymeric nanogels, liposomes, metallic nanoparticles, protein, or DNA nano-assemblies, have been employed in the fabrication of nanocarriers. In this review, we describe several ATP-responsive drug delivery systems based on the various carriers and discuss the challenges and strengths of each method.