裁切平面和恒深样板

P. Clote
{"title":"裁切平面和恒深样板","authors":"P. Clote","doi":"10.1109/LICS.1992.185542","DOIUrl":null,"url":null,"abstract":"The cutting planes refutation system for propositional logic is an extension of resolution and is based on showing the nonexistence of solutions for families of integer linear inequalities. The author defines a modified system of cutting planes with limited extension and shows that this system can polynomially simulate constant-depth Frege proof systems. The principal tool to establish this result is an effective version of cut elimination for modified cutting planes with limited extension. Thus, within a polynomial factor, one can simulate classical propositional logic proofs using modus ponens by refutation-style proofs, provided the formula depth is bounded by a constant. Propositional versions of the Paris-Harrington theorem, Kanamori-McAloon theorem, and variants are proposed as possible candidates for combinatorial tautologies that may require exponential-size cutting planes and Frege proofs.<<ETX>>","PeriodicalId":6412,"journal":{"name":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","volume":"22 1","pages":"296-307"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Cutting planes and constant depth Frege proofs\",\"authors\":\"P. Clote\",\"doi\":\"10.1109/LICS.1992.185542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cutting planes refutation system for propositional logic is an extension of resolution and is based on showing the nonexistence of solutions for families of integer linear inequalities. The author defines a modified system of cutting planes with limited extension and shows that this system can polynomially simulate constant-depth Frege proof systems. The principal tool to establish this result is an effective version of cut elimination for modified cutting planes with limited extension. Thus, within a polynomial factor, one can simulate classical propositional logic proofs using modus ponens by refutation-style proofs, provided the formula depth is bounded by a constant. Propositional versions of the Paris-Harrington theorem, Kanamori-McAloon theorem, and variants are proposed as possible candidates for combinatorial tautologies that may require exponential-size cutting planes and Frege proofs.<<ETX>>\",\"PeriodicalId\":6412,\"journal\":{\"name\":\"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"22 1\",\"pages\":\"296-307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1992.185542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1992.185542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

命题逻辑的切面反驳系统是对解的扩展,它建立在证明整数线性不等式族解的不存在性的基础上。作者定义了一个有限扩展的修正切割平面系统,并证明了该系统可以多项式地模拟等深度防弗雷格系统。建立这一结果的主要工具是对有限扩展的修改切削面进行切削消除的有效版本。因此,在多项式因子内,只要公式深度以常数为界,就可以通过反驳式证明使用模式来模拟经典命题逻辑证明。Paris-Harrington定理、Kanamori-McAloon定理的命题版本和变体被提出作为组合重言式的可能候选,这些重言式可能需要指数大小的切割平面和Frege证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cutting planes and constant depth Frege proofs
The cutting planes refutation system for propositional logic is an extension of resolution and is based on showing the nonexistence of solutions for families of integer linear inequalities. The author defines a modified system of cutting planes with limited extension and shows that this system can polynomially simulate constant-depth Frege proof systems. The principal tool to establish this result is an effective version of cut elimination for modified cutting planes with limited extension. Thus, within a polynomial factor, one can simulate classical propositional logic proofs using modus ponens by refutation-style proofs, provided the formula depth is bounded by a constant. Propositional versions of the Paris-Harrington theorem, Kanamori-McAloon theorem, and variants are proposed as possible candidates for combinatorial tautologies that may require exponential-size cutting planes and Frege proofs.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信