基于主动集迭代法的新型L2支持向量机快速学习算法

Juan-juan Gu, L. Tao, H. Kwan
{"title":"基于主动集迭代法的新型L2支持向量机快速学习算法","authors":"Juan-juan Gu, L. Tao, H. Kwan","doi":"10.1109/ISCAS.2004.1329932","DOIUrl":null,"url":null,"abstract":"An L2 soft margin support vector machine (L2 SVM) is introduced in this paper. What is unusual for the SVM is that the dual problem for the constrained optimization of the SVM is a convex quadratic problem with simple bound constraints. The active set iteration method for this optimization problem is applied as fast learning algorithm for the SVM, and the selection of the initial active/inactive sets is discussed. For incremental learning and large-scale learning problems, a fast incremental learning algorithm for the SVM is presented. Computational experiments show the efficiency of the proposed algorithm.","PeriodicalId":6445,"journal":{"name":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","volume":"60 1","pages":"V-V"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast learning algorithms for new L2 SVM based on active set iteration method\",\"authors\":\"Juan-juan Gu, L. Tao, H. Kwan\",\"doi\":\"10.1109/ISCAS.2004.1329932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An L2 soft margin support vector machine (L2 SVM) is introduced in this paper. What is unusual for the SVM is that the dual problem for the constrained optimization of the SVM is a convex quadratic problem with simple bound constraints. The active set iteration method for this optimization problem is applied as fast learning algorithm for the SVM, and the selection of the initial active/inactive sets is discussed. For incremental learning and large-scale learning problems, a fast incremental learning algorithm for the SVM is presented. Computational experiments show the efficiency of the proposed algorithm.\",\"PeriodicalId\":6445,\"journal\":{\"name\":\"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)\",\"volume\":\"60 1\",\"pages\":\"V-V\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2004.1329932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2004.1329932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种L2软边界支持向量机(L2 SVM)。支持向量机的不同之处在于,支持向量机约束优化的对偶问题是一个具有简单界约束的凸二次问题。将活动集迭代法作为支持向量机的快速学习算法应用于该优化问题,并讨论了初始活动集和非活动集的选择。针对增量学习和大规模学习问题,提出了一种支持向量机的快速增量学习算法。计算实验证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast learning algorithms for new L2 SVM based on active set iteration method
An L2 soft margin support vector machine (L2 SVM) is introduced in this paper. What is unusual for the SVM is that the dual problem for the constrained optimization of the SVM is a convex quadratic problem with simple bound constraints. The active set iteration method for this optimization problem is applied as fast learning algorithm for the SVM, and the selection of the initial active/inactive sets is discussed. For incremental learning and large-scale learning problems, a fast incremental learning algorithm for the SVM is presented. Computational experiments show the efficiency of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信