Chengpo Chen, J. Karp, Tim Toepfer, O. Boomhower, J. Kretchmer, S. Goswami, Sachin Dekate, L. Tsakalakos
{"title":"采用灰阶光刻技术制造的硅菲涅耳透镜","authors":"Chengpo Chen, J. Karp, Tim Toepfer, O. Boomhower, J. Kretchmer, S. Goswami, Sachin Dekate, L. Tsakalakos","doi":"10.1117/12.2530649","DOIUrl":null,"url":null,"abstract":"A silicon Fresnel lens was designed and fabricated using a greyscale lithography technique to shape optical emissions from an edge-emitting semiconductor diode laser. The laser beam was collimated in the fast axis and allowed a ±3° divergence in the slow axis along with bias angle accomplished through lens decentering. The lens had an aperture of 6.8 mm × 2.2 mm and 1 mm in total thickness. The lens was first designed as a contiguous surface using conventional raytracing methods, and then converted to a Fresnel sag model with an etch depth of 6.25 micrometers. The sag model along with the manufacturing tolerances were fed back through numerical tools to refine the design and modify the lens shape and laser position. Optical profilometry of fabricated lens element found deviations from design and nonuniformity across the entire aperture, with over-etching in the center and under-etching toward the edge of the lens. Characterization of the fabricated lenses showed less than 5% deviation in etch depth. Collimation performance was measured to be less than 2 milliradians, which was in close agreement with design models. Greyscale fabrication of the lens element enabled complex curvatures to be combined and provided a compact solution for direct, single optic coupling of diode laser to free-space projection.","PeriodicalId":10843,"journal":{"name":"Current Developments in Lens Design and Optical Engineering XX","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Silicon Fresnel lens fabricated using greyscale lithography\",\"authors\":\"Chengpo Chen, J. Karp, Tim Toepfer, O. Boomhower, J. Kretchmer, S. Goswami, Sachin Dekate, L. Tsakalakos\",\"doi\":\"10.1117/12.2530649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A silicon Fresnel lens was designed and fabricated using a greyscale lithography technique to shape optical emissions from an edge-emitting semiconductor diode laser. The laser beam was collimated in the fast axis and allowed a ±3° divergence in the slow axis along with bias angle accomplished through lens decentering. The lens had an aperture of 6.8 mm × 2.2 mm and 1 mm in total thickness. The lens was first designed as a contiguous surface using conventional raytracing methods, and then converted to a Fresnel sag model with an etch depth of 6.25 micrometers. The sag model along with the manufacturing tolerances were fed back through numerical tools to refine the design and modify the lens shape and laser position. Optical profilometry of fabricated lens element found deviations from design and nonuniformity across the entire aperture, with over-etching in the center and under-etching toward the edge of the lens. Characterization of the fabricated lenses showed less than 5% deviation in etch depth. Collimation performance was measured to be less than 2 milliradians, which was in close agreement with design models. Greyscale fabrication of the lens element enabled complex curvatures to be combined and provided a compact solution for direct, single optic coupling of diode laser to free-space projection.\",\"PeriodicalId\":10843,\"journal\":{\"name\":\"Current Developments in Lens Design and Optical Engineering XX\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Developments in Lens Design and Optical Engineering XX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2530649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Developments in Lens Design and Optical Engineering XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2530649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
采用灰阶光刻技术,设计并制造了一种硅菲涅耳透镜,用于边发射半导体二极管激光器的光发射。激光束在快轴上准直,在慢轴上允许±3°发散,并通过透镜离心实现偏置角。透镜孔径为6.8 mm × 2.2 mm,总厚度为1mm。首先采用传统的光线追踪方法将透镜设计为连续表面,然后将其转换为蚀刻深度为6.25微米的菲涅耳凹陷模型。通过数值工具反馈凹坑模型和加工公差,改进设计,修改透镜形状和激光位置。制造透镜元件的光学轮廓测量发现偏离设计和整个孔径的不均匀性,在中心有过蚀刻,在透镜边缘有欠蚀刻。制备的透镜的刻蚀深度偏差小于5%。测量的准直性能小于2毫弧度,与设计模型基本一致。透镜元件的灰度制造使复杂的曲率能够组合,并为二极管激光到自由空间投影的直接单光学耦合提供了紧凑的解决方案。
Silicon Fresnel lens fabricated using greyscale lithography
A silicon Fresnel lens was designed and fabricated using a greyscale lithography technique to shape optical emissions from an edge-emitting semiconductor diode laser. The laser beam was collimated in the fast axis and allowed a ±3° divergence in the slow axis along with bias angle accomplished through lens decentering. The lens had an aperture of 6.8 mm × 2.2 mm and 1 mm in total thickness. The lens was first designed as a contiguous surface using conventional raytracing methods, and then converted to a Fresnel sag model with an etch depth of 6.25 micrometers. The sag model along with the manufacturing tolerances were fed back through numerical tools to refine the design and modify the lens shape and laser position. Optical profilometry of fabricated lens element found deviations from design and nonuniformity across the entire aperture, with over-etching in the center and under-etching toward the edge of the lens. Characterization of the fabricated lenses showed less than 5% deviation in etch depth. Collimation performance was measured to be less than 2 milliradians, which was in close agreement with design models. Greyscale fabrication of the lens element enabled complex curvatures to be combined and provided a compact solution for direct, single optic coupling of diode laser to free-space projection.