$H^1(\mathbb{R})+H^s(\mathbb{T})$中NLS的全局适定性

Friedrich Klaus, P. Kunstmann
{"title":"$H^1(\\mathbb{R})+H^s(\\mathbb{T})$中NLS的全局适定性","authors":"Friedrich Klaus, P. Kunstmann","doi":"10.5445/IR/1000137946","DOIUrl":null,"url":null,"abstract":"We show global wellposedness for the defocusing cubic nonlinear Schrodinger equation (NLS) in $H^1(\\mathbb{R}) + H^{3/2+}(\\mathbb{T})$, and for the defocusing NLS with polynomial nonlinearities in $H^1(\\mathbb{R}) + H^{5/2+}(\\mathbb{T})$. This complements local results for the cubic NLS [6] and global results for the quadratic NLS \n[8] in this hybrid setting.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global wellposedness of NLS in $H^1(\\\\mathbb{R})+H^s(\\\\mathbb{T})$\",\"authors\":\"Friedrich Klaus, P. Kunstmann\",\"doi\":\"10.5445/IR/1000137946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show global wellposedness for the defocusing cubic nonlinear Schrodinger equation (NLS) in $H^1(\\\\mathbb{R}) + H^{3/2+}(\\\\mathbb{T})$, and for the defocusing NLS with polynomial nonlinearities in $H^1(\\\\mathbb{R}) + H^{5/2+}(\\\\mathbb{T})$. This complements local results for the cubic NLS [6] and global results for the quadratic NLS \\n[8] in this hybrid setting.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000137946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000137946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了$H^1(\mathbb{R}) + H^{3/2+}(\mathbb{T})$和$H^1(\mathbb{R}) + H^{5/2+}(\mathbb{T})$中散焦三次非线性薛定谔方程(NLS)的全局适定性。这补充了三次NLS[6]的局部结果和二次NLS[8]的全局结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global wellposedness of NLS in $H^1(\mathbb{R})+H^s(\mathbb{T})$
We show global wellposedness for the defocusing cubic nonlinear Schrodinger equation (NLS) in $H^1(\mathbb{R}) + H^{3/2+}(\mathbb{T})$, and for the defocusing NLS with polynomial nonlinearities in $H^1(\mathbb{R}) + H^{5/2+}(\mathbb{T})$. This complements local results for the cubic NLS [6] and global results for the quadratic NLS [8] in this hybrid setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信