对数格式上的代数联系

Maurizio Cailotto
{"title":"对数格式上的代数联系","authors":"Maurizio Cailotto","doi":"10.1016/S0764-4442(01)02189-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the theory of <span><math><mtext>O</mtext></math></span>-modules with an integrable logarithmic connection in the context of log schemes (over a field of characteristic zero), one of the first problems is that, contrary to the classical case, an object of these categories which is <span><math><mtext>O</mtext></math></span>-coherent is not necessarily locally free. We present some sufficient conditions for the local freeness, based essentially on the notion of residues of a log connection. Then we handle the problem of stability of local freeness under derived direct image for morphisms of log schemes; we prove a generalization of the Deligne–Illusie results on degeneration of the “Hodge to de Rham” spectral sequence, local freeness, compatibility with base change.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1089-1094"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02189-9","citationCount":"8","resultStr":"{\"title\":\"Algebraic connections on logarithmic schemes\",\"authors\":\"Maurizio Cailotto\",\"doi\":\"10.1016/S0764-4442(01)02189-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the theory of <span><math><mtext>O</mtext></math></span>-modules with an integrable logarithmic connection in the context of log schemes (over a field of characteristic zero), one of the first problems is that, contrary to the classical case, an object of these categories which is <span><math><mtext>O</mtext></math></span>-coherent is not necessarily locally free. We present some sufficient conditions for the local freeness, based essentially on the notion of residues of a log connection. Then we handle the problem of stability of local freeness under derived direct image for morphisms of log schemes; we prove a generalization of the Deligne–Illusie results on degeneration of the “Hodge to de Rham” spectral sequence, local freeness, compatibility with base change.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 12\",\"pages\":\"Pages 1089-1094\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02189-9\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在对数格式(特征为零的域上)的具有可积对数连接的0模理论中,首先要解决的问题之一是,与经典情况相反,这些范畴中的0相干对象不一定是局部自由的。从对数连接的残数概念出发,给出了局部自由的几个充分条件。然后处理了对数格式的态射在导出直接像下的局部自由稳定性问题;在“Hodge to de Rham”谱序列的退化、局部自由度、与碱基变化的相容性等方面,证明了Deligne-Illusie结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic connections on logarithmic schemes

In the theory of O-modules with an integrable logarithmic connection in the context of log schemes (over a field of characteristic zero), one of the first problems is that, contrary to the classical case, an object of these categories which is O-coherent is not necessarily locally free. We present some sufficient conditions for the local freeness, based essentially on the notion of residues of a log connection. Then we handle the problem of stability of local freeness under derived direct image for morphisms of log schemes; we prove a generalization of the Deligne–Illusie results on degeneration of the “Hodge to de Rham” spectral sequence, local freeness, compatibility with base change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信