最佳的负载平衡

I. Keslassy, Cheng-Shang Chang, N. McKeown, D. Lee
{"title":"最佳的负载平衡","authors":"I. Keslassy, Cheng-Shang Chang, N. McKeown, D. Lee","doi":"10.1109/INFCOM.2005.1498452","DOIUrl":null,"url":null,"abstract":"This paper is about load-balancing packets across multiple paths inside a switch, or across a network. It is motivated by the recent interest in load-balanced switches. Load-balanced switches provide an appealing alternative to crossbars with centralized schedulers. A load-balanced switch has no scheduler, is particularly amenable to optics, and - most relevant here -guarantees 100% throughput. A uniform mesh is used to load-balance packets uniformly across all 2-hop paths in the switch. In this paper we explore whether this particular method of load-balancing is optimal in the sense that it achieves the highest throughput for a given capacity of interconnect. The method we use allows the load-balanced switch to be compared with ring, torus and hypercube interconnects, too. We prove that for a given interconnect capacity, the load-balancing mesh has the maximum throughput. Perhaps surprisingly, we find that the best mesh is slightly non-uniform, or biased, and has a throughput of N/(2N - 1), where N is the number of nodes.","PeriodicalId":20482,"journal":{"name":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","volume":"113 1","pages":"1712-1722 vol. 3"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Optimal load-balancing\",\"authors\":\"I. Keslassy, Cheng-Shang Chang, N. McKeown, D. Lee\",\"doi\":\"10.1109/INFCOM.2005.1498452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is about load-balancing packets across multiple paths inside a switch, or across a network. It is motivated by the recent interest in load-balanced switches. Load-balanced switches provide an appealing alternative to crossbars with centralized schedulers. A load-balanced switch has no scheduler, is particularly amenable to optics, and - most relevant here -guarantees 100% throughput. A uniform mesh is used to load-balance packets uniformly across all 2-hop paths in the switch. In this paper we explore whether this particular method of load-balancing is optimal in the sense that it achieves the highest throughput for a given capacity of interconnect. The method we use allows the load-balanced switch to be compared with ring, torus and hypercube interconnects, too. We prove that for a given interconnect capacity, the load-balancing mesh has the maximum throughput. Perhaps surprisingly, we find that the best mesh is slightly non-uniform, or biased, and has a throughput of N/(2N - 1), where N is the number of nodes.\",\"PeriodicalId\":20482,\"journal\":{\"name\":\"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.\",\"volume\":\"113 1\",\"pages\":\"1712-1722 vol. 3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2005.1498452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2005.1498452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

本文讨论的是交换机内部或网络中跨多条路径的负载均衡数据包。它的动机是最近对负载均衡交换机的兴趣。负载平衡交换机提供了一种具有集中式调度器的替代方案。负载均衡交换机没有调度器,特别适合光学,并且(这里最相关的)保证100%的吞吐量。均匀网格用于在交换机的所有2跳路径上均匀地负载均衡数据包。在本文中,我们探讨了这种特定的负载平衡方法是否是最佳的,因为它在给定的互连容量下实现了最高的吞吐量。我们使用的方法也允许将负载均衡交换机与环形、环面和超立方体互连进行比较。证明了在给定的互连容量下,负载均衡网具有最大的吞吐量。也许令人惊讶的是,我们发现最好的网格稍微不均匀,或者有偏差,并且吞吐量为N/(2N - 1),其中N是节点数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal load-balancing
This paper is about load-balancing packets across multiple paths inside a switch, or across a network. It is motivated by the recent interest in load-balanced switches. Load-balanced switches provide an appealing alternative to crossbars with centralized schedulers. A load-balanced switch has no scheduler, is particularly amenable to optics, and - most relevant here -guarantees 100% throughput. A uniform mesh is used to load-balance packets uniformly across all 2-hop paths in the switch. In this paper we explore whether this particular method of load-balancing is optimal in the sense that it achieves the highest throughput for a given capacity of interconnect. The method we use allows the load-balanced switch to be compared with ring, torus and hypercube interconnects, too. We prove that for a given interconnect capacity, the load-balancing mesh has the maximum throughput. Perhaps surprisingly, we find that the best mesh is slightly non-uniform, or biased, and has a throughput of N/(2N - 1), where N is the number of nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信