{"title":"考拉肝脏细胞色素p4504a、过氧化物酶体酶和烟酰胺辅助因子","authors":"S Ngo, S Kong, A Kirlich, R.A McKinnon, I Stupans","doi":"10.1016/S0742-8413(00)00160-2","DOIUrl":null,"url":null,"abstract":"<div><p>We have examined hepatic levels of microsomal lauric acid hydroxylase activity and cyanide-insensitive palmitoyl coenzyme A oxidative activity in koala (<em>Phascolarctos cinereus</em>) and tammar wallaby (<em>Macropus eugenii</em>) and compared our results to those determined in rat. Microsomal lauric acid hydroxylation was significantly higher in koala than in tammar wallaby or rat. However, cyanide-insensitive palmitoyl-CoA oxidation was absent in the koala. We have also determined the hepatic nicotinamide cofactors in these species. Hepatic nicotinamide-adenine dinucleotide (NAD) and the ratio of NAD/nicotinamide-adenine dinucleotide phosphate (NADP) were higher in koala than in tammar wallaby and rat liver. Reverse transcription of koala liver mRNA, followed by polymerase chain reaction using primers based on highly conserved areas in the CYP4A family led to the cloning of a partial, near full length, cDNA clone with ∼70% nucleotide and deduced amino acid sequence identity to human CYP4A11. The CYP has been named CYP4A15.</p></div>","PeriodicalId":10586,"journal":{"name":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","volume":"127 3","pages":"Pages 327-334"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0742-8413(00)00160-2","citationCount":"29","resultStr":"{\"title\":\"Cytochrome P450 4A, peroxisomal enzymes and nicotinamide cofactors in koala liver\",\"authors\":\"S Ngo, S Kong, A Kirlich, R.A McKinnon, I Stupans\",\"doi\":\"10.1016/S0742-8413(00)00160-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have examined hepatic levels of microsomal lauric acid hydroxylase activity and cyanide-insensitive palmitoyl coenzyme A oxidative activity in koala (<em>Phascolarctos cinereus</em>) and tammar wallaby (<em>Macropus eugenii</em>) and compared our results to those determined in rat. Microsomal lauric acid hydroxylation was significantly higher in koala than in tammar wallaby or rat. However, cyanide-insensitive palmitoyl-CoA oxidation was absent in the koala. We have also determined the hepatic nicotinamide cofactors in these species. Hepatic nicotinamide-adenine dinucleotide (NAD) and the ratio of NAD/nicotinamide-adenine dinucleotide phosphate (NADP) were higher in koala than in tammar wallaby and rat liver. Reverse transcription of koala liver mRNA, followed by polymerase chain reaction using primers based on highly conserved areas in the CYP4A family led to the cloning of a partial, near full length, cDNA clone with ∼70% nucleotide and deduced amino acid sequence identity to human CYP4A11. The CYP has been named CYP4A15.</p></div>\",\"PeriodicalId\":10586,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology\",\"volume\":\"127 3\",\"pages\":\"Pages 327-334\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0742-8413(00)00160-2\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0742841300001602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0742841300001602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cytochrome P450 4A, peroxisomal enzymes and nicotinamide cofactors in koala liver
We have examined hepatic levels of microsomal lauric acid hydroxylase activity and cyanide-insensitive palmitoyl coenzyme A oxidative activity in koala (Phascolarctos cinereus) and tammar wallaby (Macropus eugenii) and compared our results to those determined in rat. Microsomal lauric acid hydroxylation was significantly higher in koala than in tammar wallaby or rat. However, cyanide-insensitive palmitoyl-CoA oxidation was absent in the koala. We have also determined the hepatic nicotinamide cofactors in these species. Hepatic nicotinamide-adenine dinucleotide (NAD) and the ratio of NAD/nicotinamide-adenine dinucleotide phosphate (NADP) were higher in koala than in tammar wallaby and rat liver. Reverse transcription of koala liver mRNA, followed by polymerase chain reaction using primers based on highly conserved areas in the CYP4A family led to the cloning of a partial, near full length, cDNA clone with ∼70% nucleotide and deduced amino acid sequence identity to human CYP4A11. The CYP has been named CYP4A15.