基于深度强化学习的增强贝叶斯压缩

Xin Yuan, Liangliang Ren, Jiwen Lu, Jie Zhou
{"title":"基于深度强化学习的增强贝叶斯压缩","authors":"Xin Yuan, Liangliang Ren, Jiwen Lu, Jie Zhou","doi":"10.1109/CVPR.2019.00711","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an Enhanced Bayesian Compression method to flexibly compress the deep networks via reinforcement learning. Unlike the existing Bayesian compression method which cannot explicitly enforce quantization weights during training, our method learns flexible codebooks in each layer for an optimal network quantization. To dynamically adjust the state of codebooks, we employ an Actor-Critic network to collaborate with the original deep network. Different from most existing network quantization methods, our EBC does not require re-training procedures after the quantization. Experimental results show that our method obtains low-bit precision with acceptable accuracy drop on MNIST, CIFAR and ImageNet.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"19 1","pages":"6939-6948"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Enhanced Bayesian Compression via Deep Reinforcement Learning\",\"authors\":\"Xin Yuan, Liangliang Ren, Jiwen Lu, Jie Zhou\",\"doi\":\"10.1109/CVPR.2019.00711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an Enhanced Bayesian Compression method to flexibly compress the deep networks via reinforcement learning. Unlike the existing Bayesian compression method which cannot explicitly enforce quantization weights during training, our method learns flexible codebooks in each layer for an optimal network quantization. To dynamically adjust the state of codebooks, we employ an Actor-Critic network to collaborate with the original deep network. Different from most existing network quantization methods, our EBC does not require re-training procedures after the quantization. Experimental results show that our method obtains low-bit precision with acceptable accuracy drop on MNIST, CIFAR and ImageNet.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"19 1\",\"pages\":\"6939-6948\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种增强贝叶斯压缩方法,通过强化学习灵活地压缩深度网络。与现有的贝叶斯压缩方法在训练过程中不能明确地强制量化权重不同,我们的方法在每层学习灵活的码本,以实现最优的网络量化。为了动态调整码本的状态,我们使用了一个Actor-Critic网络与原始深度网络协作。与大多数现有的网络量化方法不同,我们的EBC在量化后不需要再训练程序。实验结果表明,该方法在MNIST、CIFAR和ImageNet上获得了较低的位精度,精度下降可接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Bayesian Compression via Deep Reinforcement Learning
In this paper, we propose an Enhanced Bayesian Compression method to flexibly compress the deep networks via reinforcement learning. Unlike the existing Bayesian compression method which cannot explicitly enforce quantization weights during training, our method learns flexible codebooks in each layer for an optimal network quantization. To dynamically adjust the state of codebooks, we employ an Actor-Critic network to collaborate with the original deep network. Different from most existing network quantization methods, our EBC does not require re-training procedures after the quantization. Experimental results show that our method obtains low-bit precision with acceptable accuracy drop on MNIST, CIFAR and ImageNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信