{"title":"基于深度强化学习的增强贝叶斯压缩","authors":"Xin Yuan, Liangliang Ren, Jiwen Lu, Jie Zhou","doi":"10.1109/CVPR.2019.00711","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an Enhanced Bayesian Compression method to flexibly compress the deep networks via reinforcement learning. Unlike the existing Bayesian compression method which cannot explicitly enforce quantization weights during training, our method learns flexible codebooks in each layer for an optimal network quantization. To dynamically adjust the state of codebooks, we employ an Actor-Critic network to collaborate with the original deep network. Different from most existing network quantization methods, our EBC does not require re-training procedures after the quantization. Experimental results show that our method obtains low-bit precision with acceptable accuracy drop on MNIST, CIFAR and ImageNet.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"19 1","pages":"6939-6948"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Enhanced Bayesian Compression via Deep Reinforcement Learning\",\"authors\":\"Xin Yuan, Liangliang Ren, Jiwen Lu, Jie Zhou\",\"doi\":\"10.1109/CVPR.2019.00711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an Enhanced Bayesian Compression method to flexibly compress the deep networks via reinforcement learning. Unlike the existing Bayesian compression method which cannot explicitly enforce quantization weights during training, our method learns flexible codebooks in each layer for an optimal network quantization. To dynamically adjust the state of codebooks, we employ an Actor-Critic network to collaborate with the original deep network. Different from most existing network quantization methods, our EBC does not require re-training procedures after the quantization. Experimental results show that our method obtains low-bit precision with acceptable accuracy drop on MNIST, CIFAR and ImageNet.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"19 1\",\"pages\":\"6939-6948\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Bayesian Compression via Deep Reinforcement Learning
In this paper, we propose an Enhanced Bayesian Compression method to flexibly compress the deep networks via reinforcement learning. Unlike the existing Bayesian compression method which cannot explicitly enforce quantization weights during training, our method learns flexible codebooks in each layer for an optimal network quantization. To dynamically adjust the state of codebooks, we employ an Actor-Critic network to collaborate with the original deep network. Different from most existing network quantization methods, our EBC does not require re-training procedures after the quantization. Experimental results show that our method obtains low-bit precision with acceptable accuracy drop on MNIST, CIFAR and ImageNet.