解决全球能源和环境危机的关键因素

Zhiqiang Liu
{"title":"解决全球能源和环境危机的关键因素","authors":"Zhiqiang Liu","doi":"10.30919/ESMM5F225","DOIUrl":null,"url":null,"abstract":"Zhiqiang Liu is currently based Institute of Semiconductors, Chinese Academy of Sciences (IOS, CAS). His research expertise is in building interdisciplinary teams to use compound semiconductor materials and devices for applications in the areas of nitride materials and Light Emitting devices. Zhiqiang Liu Energy and environment are critical important for our sustainable development. Novel materials and nanomanufacturing techniques provide new opportunities for this important research area. This issue has nine interesting papers dedicated to thermoelectrics, alkali-activated materials (AAMs), nano-materials, and perovskite quantum dots. With growing concerns for greenhouse gas emissions, AAMs have received enormous attention due to the benefit of low carbon footprint. Wengui Li et al. (DOI: 10.30919/esmm5f204) presents a critical review on the durability performance of alkali-activated system. It will provide guidelines for the research community as well as to the stakeholders of AAMs industries who seek sustainability in their products. Nitride materials have been widely used in lightemitting devices for decades. However, highly p-doping is still a big challenge, with hinds the further development of nitride-based devices. Liu et al. (DOI: 10.30919/esmm5f209) clarified the underlying physics and the acceptor ionization process in the In-Mg co-doping GaN, which is widely applicable for other co-doping nitride systems. The results will advance the current understanding of p-doping challenge and help to further address the issue of p-doping in wide-bandgap materials, especially from the viewpoint of band-structure engineering. Thermoelectrics is one of the most promising solutions to address the global energy crisis. Shuang Tang (DOI: 10.30919/esmm5f213) developed an efficient thermoelectric indicator based on band structure information to search for the most promising candidates from various band structure databases. This work provides new physical insights for searching and improving thermoelectric materials, and will stimulate more novel work in this field following the advancement in firstprinciples calculations to predict materials properties. It will provide important guidance for researchers to select and better engineer new materials. In recent years, as significant efforts have been emphasized on the exploitation of novel polymers with enhanced functionality. Yue Chen et al. (DOI: 10.30919/esmm5f214) developed a self-healing supramolecular polymer composite (LP-GO), which was designed and prepared via incorporation of graphene oxide (GO) to hyperbranched polymer. The simplicity of synthesis and the availability from renewable resources will ensure broad applications of these composites. The recycling of photocatalysts is in great demand. The microsized magnetic Fe O powders were successfully encapsulated by 3 4","PeriodicalId":11851,"journal":{"name":"ES Materials & Manufacturing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Key Factors to Address the Issue of Global Energy and Environment Crisis\",\"authors\":\"Zhiqiang Liu\",\"doi\":\"10.30919/ESMM5F225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zhiqiang Liu is currently based Institute of Semiconductors, Chinese Academy of Sciences (IOS, CAS). His research expertise is in building interdisciplinary teams to use compound semiconductor materials and devices for applications in the areas of nitride materials and Light Emitting devices. Zhiqiang Liu Energy and environment are critical important for our sustainable development. Novel materials and nanomanufacturing techniques provide new opportunities for this important research area. This issue has nine interesting papers dedicated to thermoelectrics, alkali-activated materials (AAMs), nano-materials, and perovskite quantum dots. With growing concerns for greenhouse gas emissions, AAMs have received enormous attention due to the benefit of low carbon footprint. Wengui Li et al. (DOI: 10.30919/esmm5f204) presents a critical review on the durability performance of alkali-activated system. It will provide guidelines for the research community as well as to the stakeholders of AAMs industries who seek sustainability in their products. Nitride materials have been widely used in lightemitting devices for decades. However, highly p-doping is still a big challenge, with hinds the further development of nitride-based devices. Liu et al. (DOI: 10.30919/esmm5f209) clarified the underlying physics and the acceptor ionization process in the In-Mg co-doping GaN, which is widely applicable for other co-doping nitride systems. The results will advance the current understanding of p-doping challenge and help to further address the issue of p-doping in wide-bandgap materials, especially from the viewpoint of band-structure engineering. Thermoelectrics is one of the most promising solutions to address the global energy crisis. Shuang Tang (DOI: 10.30919/esmm5f213) developed an efficient thermoelectric indicator based on band structure information to search for the most promising candidates from various band structure databases. This work provides new physical insights for searching and improving thermoelectric materials, and will stimulate more novel work in this field following the advancement in firstprinciples calculations to predict materials properties. It will provide important guidance for researchers to select and better engineer new materials. In recent years, as significant efforts have been emphasized on the exploitation of novel polymers with enhanced functionality. Yue Chen et al. (DOI: 10.30919/esmm5f214) developed a self-healing supramolecular polymer composite (LP-GO), which was designed and prepared via incorporation of graphene oxide (GO) to hyperbranched polymer. The simplicity of synthesis and the availability from renewable resources will ensure broad applications of these composites. The recycling of photocatalysts is in great demand. The microsized magnetic Fe O powders were successfully encapsulated by 3 4\",\"PeriodicalId\":11851,\"journal\":{\"name\":\"ES Materials & Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ES Materials & Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30919/ESMM5F225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ES Materials & Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30919/ESMM5F225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

刘志强现供职于中国科学院半导体研究所。他的研究专长是建立跨学科团队,将化合物半导体材料和器件应用于氮化材料和发光器件领域。能源和环境对我们的可持续发展至关重要。新型材料和纳米制造技术为这一重要的研究领域提供了新的机遇。本期有九篇有趣的论文,专门研究热电学、碱活化材料(AAMs)、纳米材料和钙钛矿量子点。随着人们对温室气体排放的日益关注,AAMs因其低碳足迹的优势而受到了极大的关注。李文贵等人(DOI: 10.30919/esmm5f204)对碱活化体系的耐久性性能进行了评述。它将为研究界以及寻求产品可持续性的AAMs行业的利益相关者提供指导方针。氮化材料在照明器件中得到了广泛的应用。然而,高p掺杂仍然是一个很大的挑战,阻碍了氮基器件的进一步发展。Liu等人(DOI: 10.30919/esmm5f209)阐明了in - mg共掺杂GaN的基本物理原理和受体电离过程,广泛适用于其他共掺杂氮化物体系。这些结果将促进目前对p掺杂挑战的理解,并有助于进一步解决宽禁带材料中p掺杂的问题,特别是从能带结构工程的角度。热电是解决全球能源危机最有希望的解决方案之一。汤爽(DOI: 10.30919/esmm5f213)开发了一种基于能带结构信息的高效热电指示剂,从各种能带结构数据库中搜索最有希望的候选者。这项工作为寻找和改进热电材料提供了新的物理见解,并将在第一性原理计算预测材料性质方面取得进展,从而激发该领域更多的新工作。这将为研究人员选择和更好地设计新材料提供重要的指导。近年来,人们致力于开发具有增强功能的新型聚合物。岳晨等人(DOI: 10.30919/esmm5f214)开发了一种自我修复的超分子聚合物复合材料(LP-GO),该材料是通过将氧化石墨烯(GO)掺入超支化聚合物中设计和制备的。合成的简单性和可再生资源的可获得性将确保这些复合材料的广泛应用。光催化剂的回收利用需求很大。用34成功地封装了微磁性铁氧粉末
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Key Factors to Address the Issue of Global Energy and Environment Crisis
Zhiqiang Liu is currently based Institute of Semiconductors, Chinese Academy of Sciences (IOS, CAS). His research expertise is in building interdisciplinary teams to use compound semiconductor materials and devices for applications in the areas of nitride materials and Light Emitting devices. Zhiqiang Liu Energy and environment are critical important for our sustainable development. Novel materials and nanomanufacturing techniques provide new opportunities for this important research area. This issue has nine interesting papers dedicated to thermoelectrics, alkali-activated materials (AAMs), nano-materials, and perovskite quantum dots. With growing concerns for greenhouse gas emissions, AAMs have received enormous attention due to the benefit of low carbon footprint. Wengui Li et al. (DOI: 10.30919/esmm5f204) presents a critical review on the durability performance of alkali-activated system. It will provide guidelines for the research community as well as to the stakeholders of AAMs industries who seek sustainability in their products. Nitride materials have been widely used in lightemitting devices for decades. However, highly p-doping is still a big challenge, with hinds the further development of nitride-based devices. Liu et al. (DOI: 10.30919/esmm5f209) clarified the underlying physics and the acceptor ionization process in the In-Mg co-doping GaN, which is widely applicable for other co-doping nitride systems. The results will advance the current understanding of p-doping challenge and help to further address the issue of p-doping in wide-bandgap materials, especially from the viewpoint of band-structure engineering. Thermoelectrics is one of the most promising solutions to address the global energy crisis. Shuang Tang (DOI: 10.30919/esmm5f213) developed an efficient thermoelectric indicator based on band structure information to search for the most promising candidates from various band structure databases. This work provides new physical insights for searching and improving thermoelectric materials, and will stimulate more novel work in this field following the advancement in firstprinciples calculations to predict materials properties. It will provide important guidance for researchers to select and better engineer new materials. In recent years, as significant efforts have been emphasized on the exploitation of novel polymers with enhanced functionality. Yue Chen et al. (DOI: 10.30919/esmm5f214) developed a self-healing supramolecular polymer composite (LP-GO), which was designed and prepared via incorporation of graphene oxide (GO) to hyperbranched polymer. The simplicity of synthesis and the availability from renewable resources will ensure broad applications of these composites. The recycling of photocatalysts is in great demand. The microsized magnetic Fe O powders were successfully encapsulated by 3 4
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信