用光学衍射元件控制凸双曲曲面的干涉法

Q3 Mathematics
D.I. Krasnov, Sarah Nguyen, V. Druzhin
{"title":"用光学衍射元件控制凸双曲曲面的干涉法","authors":"D.I. Krasnov, Sarah Nguyen, V. Druzhin","doi":"10.18698/0236-3933-2022-4-80-91","DOIUrl":null,"url":null,"abstract":"Interference control methods are making it possible to evaluate with high accuracy errors in the shape of the optical part surface profile. The interference pattern processing allows obtaining a map of the surface deviations at each of its points with an accuracy of half the wavelength. An interference method is proposed for testing the convex hyperbolic surfaces, which could be introduced to control mirrors with large aperture angles in the imaginary geometric focus. The proposed auto-collimation control scheme consists of a helium-neon laser with the wavelength of 632.8 nm, a meniscus lens and a planar axisymmetric diffractive optical element to correct the meniscus spherical aberration. Numerical method is presented for calculating the optical diffraction element using a phase profile on the example of the secondary hyperbolic mirror of the Millimetron space telescope. The developed scheme was simulated in the Zemax OpticStudio program. The approximation error of the calculated phase profile was evaluated depending on the number of phase coefficients. The Fizeau interferometer optical system is proposed to implement the developed method. The influence of errors in installing a controlled mirror on the interference pattern for axial displacement, transverse displacement and tilt was determined. The residual wave aberration was evaluated in the control system","PeriodicalId":12961,"journal":{"name":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interference Method in Controlling the Convex Hyperbolic Surfaces using the Optical Diffraction Element\",\"authors\":\"D.I. Krasnov, Sarah Nguyen, V. Druzhin\",\"doi\":\"10.18698/0236-3933-2022-4-80-91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interference control methods are making it possible to evaluate with high accuracy errors in the shape of the optical part surface profile. The interference pattern processing allows obtaining a map of the surface deviations at each of its points with an accuracy of half the wavelength. An interference method is proposed for testing the convex hyperbolic surfaces, which could be introduced to control mirrors with large aperture angles in the imaginary geometric focus. The proposed auto-collimation control scheme consists of a helium-neon laser with the wavelength of 632.8 nm, a meniscus lens and a planar axisymmetric diffractive optical element to correct the meniscus spherical aberration. Numerical method is presented for calculating the optical diffraction element using a phase profile on the example of the secondary hyperbolic mirror of the Millimetron space telescope. The developed scheme was simulated in the Zemax OpticStudio program. The approximation error of the calculated phase profile was evaluated depending on the number of phase coefficients. The Fizeau interferometer optical system is proposed to implement the developed method. The influence of errors in installing a controlled mirror on the interference pattern for axial displacement, transverse displacement and tilt was determined. The residual wave aberration was evaluated in the control system\",\"PeriodicalId\":12961,\"journal\":{\"name\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Herald of the Bauman Moscow State Technical University. Series Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18698/0236-3933-2022-4-80-91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herald of the Bauman Moscow State Technical University. Series Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18698/0236-3933-2022-4-80-91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

干涉控制方法使高精度评价光学零件表面轮廓形状误差成为可能。干涉图样处理允许以一半波长的精度获得其每个点的表面偏差图。提出了一种检测凸双曲曲面的干涉法,该方法可用于控制虚几何焦点中的大口径反射镜。提出的自动准直控制方案由波长为632.8 nm的氦氖激光器、半月板透镜和用于校正半月板球差的平面轴对称衍射光学元件组成。以毫米空间望远镜二次双曲反射镜为例,提出了用相位轮廓法计算光学衍射元件的数值方法。该方案在Zemax OpticStudio软件中进行了仿真。根据相位系数的个数,对所计算的相位轮廓的近似误差进行了评估。提出了菲索干涉仪光学系统来实现所开发的方法。确定了控制镜安装误差对轴向位移、横向位移和倾斜干涉图的影响。在控制系统中对残余波像差进行了评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interference Method in Controlling the Convex Hyperbolic Surfaces using the Optical Diffraction Element
Interference control methods are making it possible to evaluate with high accuracy errors in the shape of the optical part surface profile. The interference pattern processing allows obtaining a map of the surface deviations at each of its points with an accuracy of half the wavelength. An interference method is proposed for testing the convex hyperbolic surfaces, which could be introduced to control mirrors with large aperture angles in the imaginary geometric focus. The proposed auto-collimation control scheme consists of a helium-neon laser with the wavelength of 632.8 nm, a meniscus lens and a planar axisymmetric diffractive optical element to correct the meniscus spherical aberration. Numerical method is presented for calculating the optical diffraction element using a phase profile on the example of the secondary hyperbolic mirror of the Millimetron space telescope. The developed scheme was simulated in the Zemax OpticStudio program. The approximation error of the calculated phase profile was evaluated depending on the number of phase coefficients. The Fizeau interferometer optical system is proposed to implement the developed method. The influence of errors in installing a controlled mirror on the interference pattern for axial displacement, transverse displacement and tilt was determined. The residual wave aberration was evaluated in the control system
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
40
期刊介绍: The journal is aimed at publishing most significant results of fundamental and applied studies and developments performed at research and industrial institutions in the following trends (ASJC code): 2600 Mathematics 2200 Engineering 3100 Physics and Astronomy 1600 Chemistry 1700 Computer Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信