各向异性BRDF重建的解纠缠表示学习

Zhongyun Hu, Xue Wang, Qing Wang
{"title":"各向异性BRDF重建的解纠缠表示学习","authors":"Zhongyun Hu, Xue Wang, Qing Wang","doi":"10.1109/ICASSP40776.2020.9054095","DOIUrl":null,"url":null,"abstract":"Accurate reconstruction of real-world materials’ appearance from a very limited number of samples is still a huge challenge in computer vision and graphics. In this paper, we present a novel deep architecture, Disentangled Generative Adversarial Network (DGAN), which performs anisotropic Bidirectional Reflectance Distribution Function (BRDF) reconstruction from single BRDF subspace with the maximum entropy. In contrast to previous approaches that directly map known samples to a full BRDF using a CNN, a disentangled representation learning is applied to guide the reconstruction process. In order to learn different physical factors of the BRDF, the generator of the DGAN mainly consists of a fresnel estimator module (FEM) and a directional module (DM). Considering the fact that the entropy of different BRDF subspace varies, we further divide the BRDF into He-BRDF and Le-BRDF to reconstruct the interior part and the exterior part of the directional factor. Experimental results show that our approach outperforms state-of-the-art methods.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"4397-4401"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DGAN: Disentangled Representation Learning for Anisotropic BRDF Reconstruction\",\"authors\":\"Zhongyun Hu, Xue Wang, Qing Wang\",\"doi\":\"10.1109/ICASSP40776.2020.9054095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate reconstruction of real-world materials’ appearance from a very limited number of samples is still a huge challenge in computer vision and graphics. In this paper, we present a novel deep architecture, Disentangled Generative Adversarial Network (DGAN), which performs anisotropic Bidirectional Reflectance Distribution Function (BRDF) reconstruction from single BRDF subspace with the maximum entropy. In contrast to previous approaches that directly map known samples to a full BRDF using a CNN, a disentangled representation learning is applied to guide the reconstruction process. In order to learn different physical factors of the BRDF, the generator of the DGAN mainly consists of a fresnel estimator module (FEM) and a directional module (DM). Considering the fact that the entropy of different BRDF subspace varies, we further divide the BRDF into He-BRDF and Le-BRDF to reconstruct the interior part and the exterior part of the directional factor. Experimental results show that our approach outperforms state-of-the-art methods.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"10 1\",\"pages\":\"4397-4401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9054095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算机视觉和图形学中,从非常有限的样本中准确重建真实世界材料的外观仍然是一个巨大的挑战。在本文中,我们提出了一种新的深层结构——解纠缠生成对抗网络(disentanglement Generative Adversarial Network, DGAN),它从单个具有最大熵的BRDF子空间进行各向异性双向反射分布函数(BRDF)重建。与之前使用CNN直接将已知样本映射到完整BRDF的方法相反,该方法应用了解纠缠表示学习来指导重建过程。为了学习BRDF的不同物理因素,DGAN的生成器主要由菲涅耳估计器模块(FEM)和定向模块(DM)组成。考虑到不同BRDF子空间的熵是不同的,我们进一步将BRDF划分为He-BRDF和Le-BRDF,重建方向因子的内部和外部。实验结果表明,我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DGAN: Disentangled Representation Learning for Anisotropic BRDF Reconstruction
Accurate reconstruction of real-world materials’ appearance from a very limited number of samples is still a huge challenge in computer vision and graphics. In this paper, we present a novel deep architecture, Disentangled Generative Adversarial Network (DGAN), which performs anisotropic Bidirectional Reflectance Distribution Function (BRDF) reconstruction from single BRDF subspace with the maximum entropy. In contrast to previous approaches that directly map known samples to a full BRDF using a CNN, a disentangled representation learning is applied to guide the reconstruction process. In order to learn different physical factors of the BRDF, the generator of the DGAN mainly consists of a fresnel estimator module (FEM) and a directional module (DM). Considering the fact that the entropy of different BRDF subspace varies, we further divide the BRDF into He-BRDF and Le-BRDF to reconstruct the interior part and the exterior part of the directional factor. Experimental results show that our approach outperforms state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信