{"title":"交换环的φ - (n, n) -理想","authors":"Adam Anebri, N. Mahdou, Ünsal Tekir, E. Yıldız","doi":"10.1142/s1005386723000391","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a commutative ring with nonzero identity and [Formula: see text] be a positive integer. In this paper, we introduce and investigate a new subclass of [Formula: see text]-[Formula: see text]-absorbing primary ideals, which are called [Formula: see text]-[Formula: see text]-ideals. Let [Formula: see text] be a function, where [Formula: see text] denotes the set of all ideals of [Formula: see text]. A proper ideal [Formula: see text] of [Formula: see text] is called a [Formula: see text]-[Formula: see text]-ideal if [Formula: see text] and [Formula: see text] imply that the product of [Formula: see text] with [Formula: see text] of [Formula: see text] is in [Formula: see text] for all [Formula: see text]. In addition to giving many properties of [Formula: see text]-[Formula: see text]-ideals, we also use the concept of [Formula: see text]-[Formula: see text]-ideals to characterize rings that have only finitely many minimal prime ideals.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"17 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On ϕ - ( n,N ) -ideals of Commutative Rings\",\"authors\":\"Adam Anebri, N. Mahdou, Ünsal Tekir, E. Yıldız\",\"doi\":\"10.1142/s1005386723000391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a commutative ring with nonzero identity and [Formula: see text] be a positive integer. In this paper, we introduce and investigate a new subclass of [Formula: see text]-[Formula: see text]-absorbing primary ideals, which are called [Formula: see text]-[Formula: see text]-ideals. Let [Formula: see text] be a function, where [Formula: see text] denotes the set of all ideals of [Formula: see text]. A proper ideal [Formula: see text] of [Formula: see text] is called a [Formula: see text]-[Formula: see text]-ideal if [Formula: see text] and [Formula: see text] imply that the product of [Formula: see text] with [Formula: see text] of [Formula: see text] is in [Formula: see text] for all [Formula: see text]. In addition to giving many properties of [Formula: see text]-[Formula: see text]-ideals, we also use the concept of [Formula: see text]-[Formula: see text]-ideals to characterize rings that have only finitely many minimal prime ideals.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000391\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000391","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let [Formula: see text] be a commutative ring with nonzero identity and [Formula: see text] be a positive integer. In this paper, we introduce and investigate a new subclass of [Formula: see text]-[Formula: see text]-absorbing primary ideals, which are called [Formula: see text]-[Formula: see text]-ideals. Let [Formula: see text] be a function, where [Formula: see text] denotes the set of all ideals of [Formula: see text]. A proper ideal [Formula: see text] of [Formula: see text] is called a [Formula: see text]-[Formula: see text]-ideal if [Formula: see text] and [Formula: see text] imply that the product of [Formula: see text] with [Formula: see text] of [Formula: see text] is in [Formula: see text] for all [Formula: see text]. In addition to giving many properties of [Formula: see text]-[Formula: see text]-ideals, we also use the concept of [Formula: see text]-[Formula: see text]-ideals to characterize rings that have only finitely many minimal prime ideals.
期刊介绍:
Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.