{"title":"调查社交媒体的时空可转移性","authors":"Emmanouil Chaniotakis , Mohamed Abouelela , Constantinos Antoniou , Konstadinos Goulias","doi":"10.1016/j.commtr.2022.100081","DOIUrl":null,"url":null,"abstract":"<div><p>Social Media have increasingly provided data about the movement of people in cities making them useful in understanding the daily life of people in different geographies. Particularly useful for travel analysis is when Social Media users allow (voluntarily or not) tracing their movement using geotagged information of their communication with these online platforms. In this paper we use geotagged tweets from 10 cities in the European Union and United States of America to extract spatiotemporal patterns, study differences and commonalities among these cities, and explore the nature of user location recurrence. The analysis here shows the distinction between residents and tourists is fundamental for the development of city-wide models. Identification of repeated rates of location (recurrence) can be used to define activity spaces. Differences and similarities across different geographies emerge from this analysis in terms of local distributions but also in terms of the worldwide reach among the cities explored here. The comparison of the temporal signature between geotagged and non-geotagged tweets also shows similar temporal distributions that capture in essence city rhythms of tweets and activity spaces.</p></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772424722000312/pdfft?md5=6f7cce7ae76c54dacaf8db2857b64682&pid=1-s2.0-S2772424722000312-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Investigating social media spatiotemporal transferability for transport\",\"authors\":\"Emmanouil Chaniotakis , Mohamed Abouelela , Constantinos Antoniou , Konstadinos Goulias\",\"doi\":\"10.1016/j.commtr.2022.100081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Social Media have increasingly provided data about the movement of people in cities making them useful in understanding the daily life of people in different geographies. Particularly useful for travel analysis is when Social Media users allow (voluntarily or not) tracing their movement using geotagged information of their communication with these online platforms. In this paper we use geotagged tweets from 10 cities in the European Union and United States of America to extract spatiotemporal patterns, study differences and commonalities among these cities, and explore the nature of user location recurrence. The analysis here shows the distinction between residents and tourists is fundamental for the development of city-wide models. Identification of repeated rates of location (recurrence) can be used to define activity spaces. Differences and similarities across different geographies emerge from this analysis in terms of local distributions but also in terms of the worldwide reach among the cities explored here. The comparison of the temporal signature between geotagged and non-geotagged tweets also shows similar temporal distributions that capture in essence city rhythms of tweets and activity spaces.</p></div>\",\"PeriodicalId\":100292,\"journal\":{\"name\":\"Communications in Transportation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772424722000312/pdfft?md5=6f7cce7ae76c54dacaf8db2857b64682&pid=1-s2.0-S2772424722000312-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Transportation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772424722000312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424722000312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Investigating social media spatiotemporal transferability for transport
Social Media have increasingly provided data about the movement of people in cities making them useful in understanding the daily life of people in different geographies. Particularly useful for travel analysis is when Social Media users allow (voluntarily or not) tracing their movement using geotagged information of their communication with these online platforms. In this paper we use geotagged tweets from 10 cities in the European Union and United States of America to extract spatiotemporal patterns, study differences and commonalities among these cities, and explore the nature of user location recurrence. The analysis here shows the distinction between residents and tourists is fundamental for the development of city-wide models. Identification of repeated rates of location (recurrence) can be used to define activity spaces. Differences and similarities across different geographies emerge from this analysis in terms of local distributions but also in terms of the worldwide reach among the cities explored here. The comparison of the temporal signature between geotagged and non-geotagged tweets also shows similar temporal distributions that capture in essence city rhythms of tweets and activity spaces.