异常值的无分布检验

B. Candelon, N. Metiu
{"title":"异常值的无分布检验","authors":"B. Candelon, N. Metiu","doi":"10.2139/ssrn.2796894","DOIUrl":null,"url":null,"abstract":"Determining whether a data set contains one or more outliers is a challenge commonly faced in applied statistics. This paper introduces a distribution-free test for multiple outliers in data drawn from an unknown data generating process. Besides, a sequential algorithm is proposed in order to identify the outlying observations in the sample. Our methodology relies on a two-stage nonparametric bootstrap procedure. Monte Carlo experiments show that the proposed test has good asymptotic properties, even for relatively small samples and heavy tailed distributions. The new outlier detection test could be instrumental in a wide range of statistical applications. The empirical performance of the test is illustrated by means of two examples in the fields of aeronautics and macroeconomics.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Distribution-Free Test for Outliers\",\"authors\":\"B. Candelon, N. Metiu\",\"doi\":\"10.2139/ssrn.2796894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining whether a data set contains one or more outliers is a challenge commonly faced in applied statistics. This paper introduces a distribution-free test for multiple outliers in data drawn from an unknown data generating process. Besides, a sequential algorithm is proposed in order to identify the outlying observations in the sample. Our methodology relies on a two-stage nonparametric bootstrap procedure. Monte Carlo experiments show that the proposed test has good asymptotic properties, even for relatively small samples and heavy tailed distributions. The new outlier detection test could be instrumental in a wide range of statistical applications. The empirical performance of the test is illustrated by means of two examples in the fields of aeronautics and macroeconomics.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2796894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2796894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

确定数据集是否包含一个或多个离群值是应用统计中经常面临的挑战。本文介绍了一种对未知数据生成过程中提取的数据中多个异常值的无分布检验方法。此外,为了识别样本中的离群观测值,提出了一种序列算法。我们的方法依赖于一个两阶段的非参数自举过程。蒙特卡罗实验表明,即使对于相对较小的样本和重尾分布,所提出的检验也具有良好的渐近性。新的离群值检测测试可以在广泛的统计应用中发挥重要作用。通过航空和宏观经济领域的两个实例说明了该方法的实证效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distribution-Free Test for Outliers
Determining whether a data set contains one or more outliers is a challenge commonly faced in applied statistics. This paper introduces a distribution-free test for multiple outliers in data drawn from an unknown data generating process. Besides, a sequential algorithm is proposed in order to identify the outlying observations in the sample. Our methodology relies on a two-stage nonparametric bootstrap procedure. Monte Carlo experiments show that the proposed test has good asymptotic properties, even for relatively small samples and heavy tailed distributions. The new outlier detection test could be instrumental in a wide range of statistical applications. The empirical performance of the test is illustrated by means of two examples in the fields of aeronautics and macroeconomics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信